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SINH-ACCELERATION: EFFICIENT EVALUATION OF PROBABILITY

DISTRIBUTIONS, OPTION PRICING, AND MONTE-CARLO

SIMULATIONS

SVETLANA BOYARCHENKO AND SERGEI LEVENDORSKĬI

Abstract. Characteristic functions of several popular classes of distributions and processes
admit analytic continuation into unions of strips and open coni around R ⊂ C. The Fourier
transform techniques reduces calculation of probability distributions and option prices to eval-
uation of integrals whose integrands are analytic in domains enjoying these properties. In the
paper, we suggest to use changes of variables of the form ξ =

√
−1ω1 + b sinh(

√
−1ω + y)

and the simplified trapezoid rule to evaluate the integrals accurately and fast. We formulate
the general scheme, and apply the scheme for calculation probability distributions and pricing
European options in Lévy models, the Heston model, the CIR model, and a subordinated NTS
model. We outline applications to fast and accurate calibration procedures and Monte Carlo
simulations.

Key words: sinh-regular Lévy processes, sinh-regular distributions, sinh-acceleration, Heston
model, KoBoL, CGMY, CIR, CIR subordinator, Monte-Carlo simulations

1. Introduction

In the paper, we formulate general conditions on integrals, which arise in the Laplace and
Fourier inversion, the Wiener-Hopf factorization, calculation of probability distributions, and
pricing options and other derivative securities, which make it possible to evaluate these integrals
very accurately and fast. We start with the explanation of the main idea of the suggested
methodology in the case of one-dimensional integrals of the form

(1.1) I =

∫
Im ξ=ω0

e−ixξg(ξ)dξ,

where i =
√
−1, x ∈ R, the line of integration {Im ξ = ω0} is in the domain of analyticity of

g, and g(ξ) decays sufficiently fast as ξ → ∞ remaining in the strip sandwiched between the
lines R and {Im ξ = ω0}. In probability, the simplest integrals of this kind appear when the
characteristic function g(ξ) = E[eiξY ] of a random variable Y is well-defined not only on R but
on the line {Im ξ = ω0} as well. Then the RHS of (1.1) is the probability distribution function
(pdf) pY (x) of Y evaluated at x (and multiplied by 2π).
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The first step of our methodology is the following change the variable in (1.1):

(1.2) ξ = χω1,ω;b(y) = iω1 + b sinh(iω + y),

where ω0, ω1 ∈ R, ω ∈ [−π/2, π/2] and b > 0 are related as follows: ω0 = ω1 + b sin(ω).
We call the change of variables (1.2) the sinh-acceleration (in the case of multiple integrals,
we make an appropriate sinh-accelerations w.r.t. to each argument). In the y- coordinate,
we integrate over the real line. The change of variables can be justified if the integrand
f(y) = e−ixχω1,ω;b(y)g(χω1,ω;b(y))χ

′
ω1,ω;b

(y) admits analytic continuation to a sufficiently wide

strip S(d−,d+) = {y ∈ C | Im y ∈ (d−, d+)} and decays sufficiently fast as y → ∞ remaining in
the strip. In more detail, the Cauchy integral theorem allows us to deform the line of integra-
tion {Im ξ = ω0} into the contour Lω1,ω;b := χω1,ω;b(R). In the integral over Lω1,ω;b, we make
the change of variables (1.2).

The sinh-acceleration is possible iff the integrand admits analytic continuation to the union of
a strip S around the line of integration {Im ξ = ω0} and an appropriate conus, and vanishes as
ξ → ∞ remaining in the conus. In some important cases, analytic continuation to a wider region
in an appropriate Riemann surface is possible, and then the speed of the method improves.

We failed to invent a short name for a class of functions enjoying these properties: whereas
the name “functions analytic in a strip (and decaying at infinity)” is not exceedingly clumsy,
the name “functions analytic in a union of a strip and conus” does seem clumsy. We suggest
the name sinh-regular functions. We use the same adjective sinh-regular for distributions and
processes that lead to integrals of sinh-regular functions. For the same process, in different
problems, the sinh-acceleration with different sets of parameters ω1, ω, b needs to be used,
therefore, we will formulate general conditions on the characteristic function of the process
in terms of the strip (in multi-factor models, tube domain) and conus of analyticity, and list
several wide classes of sinh-regular processes and distributions.

The second step of our methodology is quite standard: the discretization of the integral using
the infinite trapezoid rule. If the integrand is analytic in a strip S(ω0−d,ω0+d) around the line
of integration and decays sufficiently fast as ξ → ∞ remaining in the strip, the discretization
error of the simplified trapezoid rule decays exponentially as a function of the reciprocal to the
mesh size ζ. Hence, a small error tolerance can be satisfied quite easily. Next, the infinite sum
must be truncated; the resulting formula is called the simplified trapezoid rule:

I = ζ
∑
|j|≤N

f(jζ).

As it is common in the literature, one can apply the simplifying trapezoid rule to the initial
integral. However, in many cases of interest, g(ξ) decays slowly as ξ → ∞ remaining in
the strip, hence, the truncation error decays slowly as the number of terms of the simplified
trapezoid rule increases. For instance, even a moderately accurate evaluation of the probability
distribution of a Lévy process may require dozens of million of terms and more. The sinh-
acceleration exponentially increases the rate of decay of the integrand, and the number N of
terms sufficient to satisfy a given error significantly decreases. In many cases, N < 10 suffice
to satisfy the error tolerance ϵ = 10−7; typically, less than 50 terms suffice, and in essentially
all cases of interest, N of the order of 100-150 suffices to satisfy the error tolerance 10−12.
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A similar trick with the fractional-parabolic changes of the variables of the form

(1.3) ξ = χ±
ω;σ;α(η) = iω ± iσ(1∓ iη)α,

where ω ∈ R, σ > 0, α > 1, was systematically used in a series of papers [7, 28, 6, 32, 13,
5, 30, 8, 31, 20, 21]. In the working paper [29], it was suggested to use the sinh-acceleration
η = sinh(ay)/a with integration over the real line after the fractional-parabolic change of
variables has been made. In the present paper, we use the sinh-acceleration only, in the more
general form (1.2). Depending on the sign of ω, the new contour of integration Lω1,ω,b is
deformed either upward or downward, and the deformed contours enjoy properties similar to
the properties of the contours in [7, 28, 6, 32, 13, 5, 30, 8, 31, 20, 21, 29]. The number of
terms of the simplified trapezoid rule is approximately the same as in [29] (and smaller than
in [7, 28, 6, 32, 13, 5, 30, 8, 31, 20, 21], where thousands of terms are needed in some cases)
but the number of elementary operations needed to calculate individual terms decreases. The
general scheme is simpler than the one in [29].

The rest of the paper is organized as follows. In Section 2, we explain the sinh-acceleration
techniques in applications to evaluation of probability distribution functions of wide classes of
Lévy processes and infinitely divisible distributions, which we call sinh-regular processes and
distributions. The class contains almost all popular classes of Lévy processes used in finance,
conditional probability distributions in the Heston model, more general stochastic volatility
models, affine and quadratic interest rate models, models with Wishart dynamics, Barndorf-
Nielsen and Shephard model, 3/2 model,. . . . As a basic numerical example, we consider the
probability distributions in the NTS model [3]. In Section 3, 4 and 5, we consider pricing
European options in sinh-regular Lévy models and the Heston model, the CIR model, and the
subordinated NTS model, the subordinator being the aggregated square root process. Section
7 summarizes the results of the paper and outlines natural extensions. Technical results and
tables are relegated to Sections A and Section B, respectively.

2. SINH-regular Lévy processes and infinitely divisible distributions

2.1. Definition. In [10], two almost equivalent definitions of a wide family of Regular Lévy
Processes of exponential type (RLPE) are given: one in terms of the Lévy density (exponential
decay at infinity), the other one in terms of the characteristic exponent (analytic in a strip
around the real axis for processes on R, and, for processes on Rn, in a tube domain Rn +
iU , where U ⊂ Rn is an open set containing 0). The class of RLPEs contains all classes
of processes (model classes) popular in quantitative finance. The class of tempered stable
Lévy process as defined in [41] is a subclass of RPLEs. In [7, 6, 32], it was noticed that
the characteristic exponents of processes of the model classes admit analytic continuation to
much wider regions of the complex plane and appropriate Riemann surfaces, and enjoy several
properties useful for the construction of new efficient methods for pricing contingent claims. In
this paper, we relax the general conditions of the definition of strongly regular Lévy processes
of exponential type (sRLPE) introduced in [6]. Additional conditions formulated in [6, 32]
were needed for the construction of more efficient methods when the Wiener-Hopf factorization
and the fractional-parabolic change of variables were used. When the sinh-acceleration is used
instead, the advantage of these additional conditions is marginal.
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Let λ− < 0 < λ+ and −π/2 ≤ γ− < γ+ ≤ π/2 and either γ− ≤ 0 < γ+ or γ− < 0 ≤ γ+. We
define the conus Cγ−,γ+ = {eiφρ | ρ ≥ 0, φ ∈ (γ−, γ+) ∪ (π − γ+, π − γ−)}, and the set

(2.1) U(λ−, λ+; γ
−, γ+) = i(λ−, λ+) + Cγ−,γ+ := {ia+ z | λ− < a < λ+, z ∈ Cγ−,γ+}.

As in [6], we represent the characteristic exponent in the form

(2.2) ψ(ξ) = −iµξ + ψ0(ξ),

and impose conditions on ψ0.
We need coni C = Cγ−,γ+ of several kind:

(1) to describe a domain U = i(λ−, λ+) + Cγ−,γ+ of analyticity of the characteristic exponent:

(2) to introduce a subset Uu = i(λ−, λ+) + Cu where |ψ0(ξ)| admits a useful upper bound;
(3) to introduce a subset U l = i(λ−, λ+) + Cl where Reψ0(ξ) admits a useful lower bound.

In many cases, the coni are around the real axis. However, if ψ0(ξ) = o(|ξ|) as ξ → ∞ in the
domain of analyticity, and µ ̸= 0, then, to calculate the pdf not at the peak and price options
that are not at the money, we will have to choose a domain U ′ = i(λ−, λ+) + C′, where the
conus C′ is either in the upper half-plane or low half-plane.1

Definition 2.1. We say that X is a SINH-regular Lévy process (on R) of type ((µ−, µ+); C; C+)
and order ν ∈ (0, 2] iff the following conditions are satisfied:

(i) µ− < 0 < µ+;
(ii) C+ ⊂ C ⊂ C are open coni adjacent to or containing the real axis;
(iii) ψ, the characteristic exponent of X, admits analytic continuation to i(µ−, µ+) + C;
(iv) for any µ′− ∈ (µ−, 0), µ

′
+ ∈ (0, µ+) and an open sub-cone Cu ⊂ C adjacent to or containing

the real axis, there exist C > 0 such that

(2.3) |ψ0(ξ)| ≤ C(1 + |ξ|)ν , ∀ ξ ∈ i[µ′−, µ
′
+] + Cu;

(v) for any closed sub-cone Cl+ ⊂ C+ and any [µ′−, µ
′
+] ⊂ (µ−, µ+), there exist c, C > 0 such

that

(2.4) Reψ0(ξ) ≥ c|ξ|ν − C, ∀ ξ ∈ i[µ′−, µ
′
+] + Cl+.

We say that a distribution is a SINH-regular infinitely divisible distribution of type ((µ−, µ+); C; C+)
and order ν iff it is the distribution of X1, where X is a SINH-regular Lévy process of type
((µ−, µ+); C; C+) and order ν.

Definition 2.2. We say that X is an elliptic SINH-regular Lévy process of type ((µ−, µ+); C; C+)
and order ν if conditions (i)-(iii) and the following two conditions hold

(iv)’ for any ξ0 ∈ C ∩ {ξ | |ξ| = 1}, as ρ→ +∞,

(2.5) ψ0(ρξ0) ∼ c∞(arg ξ0)ρ
ν ,

where c∞(arg ξ0) := c∞(ψ0, arg ξ0) is continuous;

(v)’ for any ξ0 ∈ Cl+ ∩ {ξ | |ξ| = 1}, Re c∞(arg ξ0) > 0.
We say that a distribution is an elliptic SINH-regular infinitely divisible distribution iff it is

the distribution of X1, where X is an elliptic SINH-regular Lévy process.

1 Additional conditions on sets of the form (2.1) are needed when the Wiener-Hopf factors are calculated;
these conditions depend on the spectral parameter.
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Remark 2.1. a) The properties needed for efficient calculations are formulated in the language
of Complex Analysis, and cannot be naturally formulated in the probabilistic language. Indeed,
such simple processes as the Brownian motion with an embedded compound Poisson process
with the Lévy density 1[a,b], where a < 0 < b, are RLPEs and their characteristic exponents

are analytic in the complex plane but, on any conus, Reψ0(ξ) is not semi-bounded, and the
crucial property (2.4) fails. However, if either a = 0, b > 0 or a < 0, b = 0, then such a process
is an elliptic SINH-regular process of type ((µ−, µ+); C; C+), where µ− < 0 < µ+ are arbitrary,
and C, C+ are coni in the lower half plane if a < 0, b = 0, and upper half plane if a = 0, b > 0.

b) The properties formalized in Definitions 2.1 and 2.2 for characteristic exponents hold
for wide classes of the symbols of pseudo-differential operators (PDO) which have no relation
to probability, and the methods based on these properties can be applied to develop efficient
numerical methods for various boundary problems for such PDOs.

Remark 2.2. If a subordinator Y and process X are elliptic SINH-regular Lévy processes,
then {XYt} is an elliptic SINH-regular Lévy process. See Section 5 for an example.

2.2. Examples and some generalizations.

(1) Essentially all Lévy processes used in quantitative finance are elliptic SINH-regular Lévy
processes: Brownian motion (BM), Merton model [40], NIG (normal inverse Gaussian
model) [2], hyperbolic processes [14], double-exponential jump-diffusion model [33, 34, 22,
23, 24], its generalization: hyper-exponential jump-diffusion model, introduced in [26, 33]
and studied in detail in [26, 27], the majority of processes of the β-class [25]; the generalized
Koponen’s family [9] and its subclass KoBoL [10]. A subclass of KoBoL (known as the
CGMY model - see [11]) is given by the characteristic exponent

(2.6) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where ν ∈ (0, 2), ν ̸= 1 (in the case ν = 1, the analytical expression is different: see
[9, 10]). Thus, KoBoL is SINH-regular of type ((λ−, λ+); C, C+) of order ν, where C = C−γ,γ ,
γ ≥ π/2, and C+ = C−γ′,γ′ , where γ′ = π/(2ν) (see (3) below for the meaning of γ′ > π/2).
BM, DEJD and HEJD are of order ν = 2, and NIG is of order ν = 1.

The characteristic exponents of NTS processes constructed in [3] are given by

(2.7) ψ(ξ) = −iµξ + δ[(α2 + (ξ + iβ)2)ν/2 − (α2 − β2)ν/2],

where ν ∈ (0, 2), δ > 0, |β| < α. This is a process of type ((α + β, α − β); C, C+) of order
ν, where C and C+ are the same as for KoBoL of the same order.

(2) In order to consider Variance Gamma processes (VG) [37], Definitions 2.1-2.2 must be
generalized replacing the function ρ 7→ ρν with a strictly increasing function w : R+ → R+

satisfying w(+∞) = +∞. We say: X is an (elliptic) SINH-regular Lévy process of type
(S, C, C+, w). For Variance Gamma processes, w(ρ) = ln(1 + ρ).

(3) For KoBoL, VG and NTS, ψ0 admits analytic continuation into an appropriate Riemann
surface R, and C can be defined as an appropriate subset of R. Formally, in (1), γ > π/2 is
admissible with the understanding that seemingly overlapping parts of C−γ,γ lie on different
sheets of R. See [7, 6, 32], where advantages of C+ ⊂ R were utilized to increase the speed.
The same extension is very useful when the SINH-acceleration is applied to calculate the
Wiener-Hopf factors, and less so for pricing European options.

(4) The asymptotic coefficient c∞(arg ξ0) is
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(i) if X is BM, DEJD and HEJD, c∞(φ) = (σ2/2)ei2φ, hence, C+ = C−π/4,π/4;
(ii) if X is given by (2.6), then, for φ ∈ [−π/(2ν), π/(2ν)],

(2.8) c∞(φ) = −2cΓ(−ν) cos(πν/2)eiνφ,
hence, C+ = C−π/(2ν),π/(2ν);

(iii) if X is given by (2.7), then, for φ ∈ [−π/(2ν), π/(2ν)],
(2.9) c∞(iφ) = δeiνφ,

hence, C+ = C−π/(2ν),π/(2ν).
(5) In [9], we constructed more general classes of Lévy processes, with the characteristic expo-

nents of the form

(2.10) ψ(ξ) = −iµξ + c+Γ(−ν+)[λν++ − (λ+ + iξ)ν+ ] + c−Γ(−ν−)[(−λ−)ν− − (−λ− − iξ)ν− ],

where c± ≥ 0, c+ + c− > 0, λ− < 0 < λ+, ν± ∈ (0, 2), ν± ̸= 1, with modifications in the
case ν+ = 1 and/or ν− = 1. For these processes, the domains of analyticity and bounds are
more involved. In particular, in general, the coni are not symmetric w.r.t. the real axis.

(6) In examples above, Reψ0(ξ) → +∞ as ξ → ∞ in a conus around the real axis, due to
special forms of the Lévy densities, hence, characteristic functions. If ψ0(ξ) contains terms
of the form Ceicξ, where c ∈ R, then
(i) if c < 0, then Reψ0(ξ) is not semibounded (from below) as ξ → ∞ in any conus C in

the upper half-plane;
(ii) if c > 0, then Reψ0(ξ) is not semibounded (from below) as ξ → ∞ in any conus in

the lower half-plane.
The simplest example is the BM with the embedded jumps, the Lévy density being 1[−a,b].

If a < 0 < b, then Reψ0(ξ) is not semibounded as ξ → ∞ in any conus C.
(7) If X is the BM with embedded negative jumps only, and the jump density decays ex-

ponentially at infinity, then X is an elliptic SINH-regular process of order 2 and type
((0,+∞); C, C0,π/4), where C is the upper half-plane. If X is the BM motion with em-
bedded positive jumps only, then X is an elliptic SINH-regular of order 2 and type
((−∞, 0); C, C−π/4,0), where C is the lower half-plane.

(8) In Example (7), one may any add a positive (resp., negative) jump component as in KoBoL
or exponential jump-diffusions. One can also replace the BM with one-sided SINH-regular
processes of type ((µ−, µ+), C, C+), where µ− < 0 < µ+ and C+, C are coni around the
real axis. In both cases, the type of the resulting process X will be characterized by
smaller domains of analyticity than in the case of the BM with embedded one-sided jump
components.

(9) Conditional distributions in affine stochastic volatility models and affine and quadratic
interest rate models are sinh-regular.

2.3. Calculation of probability distributions. The pdf of Xt equals

(2.11) pt(x) =
1

2π

∫
R
e−ix

′ξ−tψ0(ξ)dξ,

where x′ = x − µt. Denote g(ξ) = e−tψ
0(ξ). The change of variables (1.2) can be justified

if the integrand f(y) = e−ix
′χω1,ω;b(y)g(χω1,ω;b(y))χ

′
ω1,ω;b

(y) admits analytic continuation to a

strip S(−d,d) = {y ∈ C | Im y ∈ (−d, d)} around the real line and decays sufficiently fast as
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Figure 1. Solid lines: boundaries of the domain of analyticity S(−1,1) + C−π/4,π/4 in
ξ-coordinate. Dots: points ξj = χω1,ω;b(yj) = iω1+b sinh(iω+yj) used in the simplified
trapezoid rule. Dots-dashes: boundaries of the image χω1,ω;b(S(−d,d)) of the strip of
analyticity S(−d,d). Upper panel: ω1 = ω = 0, d = π/4, b = 1/ sin(π/4). Lower panel:
ω1 = −1, ω = d = π/8, b = 2/ sin(π/8). For the calculations represented in the lower
panel, only a smaller domain S(−1,1) + C0,π/4 matters.

y → ∞ remaining in the strip. In more detail, the Cauchy integral theorem allows us to deform
the line of integration {Im ξ = ω0} into the contour Lω1,ω;b := χω1,ω;b(R). In the integral over
Lω1,ω;b, we make the change of variables (1.2).

The choice of the parameters of the sinh-acceleration depends on the type of the process, its
order, and x′. It is convenient to consider separately the following cases:

(1) C+ = Cγ−,γ+ , where γ− < 0 < γ+, ν ∈ (1, 2] or ν ∈ (0, 1] and x′ = 0: as ξ → ∞, the leading

term of the asymptotics of −ix′ξ− tψ0(ξ) is the same as the one of −tψ0(ξ), hence, one can
choose the parameters of the sinh-acceleration without taking x′ into account. The line of
integration may remain flat or it can be deformed either upward or downward. The conus
of analyticity used to derive the error bound can be around the real axis (see the upper
panel in Fig.1 for illustration), which allows one to use the mesh of a larger size than in
the other cases. Naturally, if ν > 1 is close to 1 and/or x′ is large in the absolute value,
then it is safer to take the sign of x′ into account, and deform the contour as in the case
ν ∈ (0, 1).
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(2) C+ = Cγ−,γ+ , where γ− = 0 < γ+, ν ∈ (0, 1), x′ < 0. As ξ → ∞, the leading term of the

asymptotics of −ix′ξ− tψ0(ξ) is the same as the one of −ix′ξ, hence, the deformed contour
and the conus of analyticity used to derive the error bound must be in the upper half-plane
even if γ− < 0 (see the lower panel in Fig.1 for illustration).

(3) C+ = Cγ−,γ+ , where γ− < 0 = γ+, ν ∈ (0, 1), x′ > 0. As ξ → ∞, the leading term of the

asymptotics of −ix′ξ− tψ0(ξ) is the same as the one of −ix′ξ, hence, the deformed contour
and the conus of analyticity used to derive the error bound must be in the lower half-plane
even if γ+ > 0.

(4) C+ = Cγ−,γ+ , where γ− < 0 < γ+, ν = 1, x′ ̸= 0. It is optimal to deform the contour but
the conus of analyticity used to derive the error bound can be around the real axis.

(5) C+ = Cγ−,γ+ , where either γ− = 0 < γ+ or γ− < 0 = γ+, and ν = 1. The deformed contour
and the conus of analyticity used to derive the error bound must be in the lower half-plane
even if γ+ > 0 and in the lower half-plane even if γ− < 0.

In the next subsection, we assume that C+ = Cγ−,γ+ , where γ− < 0 < γ+. The reader can

easily modify the constructions below for the cases γ− = 0 < γ+ and γ− < 0 = γ+.

2.3.1. The case ν ∈ (1, 2] and the case ν ∈ (0, 1], x′ = 0. In these cases, for any γ−,
′ ∈

(γ−, 0), γ+,
′ ∈ (0, γ+), there exists c > 0 such that

(2.12) Re c∞(φ) ≥ c, γ−,
′ ≤ φ ≤ γ+,

′
.

First, we choose ω ∈ R and d0 > 0 so that ω + d0 ≤ γ+, ω − d0 ≥ γ−. Since d0 is the upper
bound for the half-width of the strip of analyticity in the y-coordinate, we want to choose d0
as large as possible. Hence, we set

(2.13) ω = (γ+ + γ−)/2, d0 = (γ+ − γ−)/2;

then ω + d0 = γ+, ω − d0 = γ−. Next, we must ensure that the intersection of the imaginary
axis and the image of S(−d0,d0) under χω1,ω;b is a subset of (µ−, µ+), which is equivalent to

ω1 + ba+ ≤ µ+, ω1 − b ≥ a−µ−, where a− = sin(min{π/2,−γ−}), a+ = sin(min{π/2, γ+}). We
define

(2.14) ω1 =
µ+a− + µ−a+
a+ + a−

, b0 =
µ+ − µ−
a+ + a−

.

If γ− = −γ+ which is the case for KoBoL and the generalization of NIG, (2.14) simplify

(2.15) ω1 =
µ+ + µ−

2
, b0 =

µ+ − µ−
2 sin(min{π/2, γ+})

.

In (1.2), we choose d < d0, b < b0 close to d0, b0, respectively, e.g., d = 0.95d0, b = 0.95d0.
Then the integrand

f(y) = (1/2π) exp[−ix′χω1,ω;b(y)− tψ0(χω1,ω;b(y))]χ
′
ω1,ω;b(y)

admits analytic continuation to the strip S(−d,d) = {y ∈ C | Im y ∈ (−d, d)} around the real
line and decays sufficiently fast as y → ∞ remaining in the strip so that

lim
A→±∞

∫ d

−d
|f(ia+A)|da = 0,
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and the Hardy norm

(2.16) H(f, d) = lim
a↓−d

∫
R
|f(ia+ y)|dy + lim

a↑d

∫
R
|f(ia+ y)|dy

is finite. Fix ζ > 0 and construct the grid {yj = jζ, j ∈ Z}. The discretization error of the
infinite trapezoid rule

(2.17) pt(x) = ζ
∑
j∈Z

f(yj)

admits an upper bound via H(f, d) exp[−2πd/ζ]/(1− exp[−2πd/ζ]) (see Theorem 3.2.1 in [42]
and Appendix in [28] for a simple proof). In some cases, the Hardy norm of the integrand
as a function on a maximal strip of analyticity is infinite. In such cases, in order to use the
universal bound for the discretization error, one has to apply the bound to functions on a
narrower strip of analyticity; this explains our choices d < d0 and b < b0. A fairly accurate
approximate bound for H(f, d) can be derived relatively easily but, as in the case of the
fractional-parabolic deformations [28, 30], the following rude approximation works well if the
initial strip of analyticity is not very narrow and, typically, leads to an overkill:

(2.18) H(f, d) = C(|f(−id)|+ |f(id)|),
where C = 10. To satisfy a small error tolerance ϵ > 0, we choose ζ = 2πd/(ln(H(f, d)/ϵ) ∼
2πd/E, where E = ln(1/ϵ). The choice of N , the number of terms of the simplified trapezoid
rule, equivalently, of the truncation parameter Λ = Nζ, is somewhat more involved. The
truncation error of the simplified trapezoid rule

(2.19) pt(x) = ζ
∑
|j|≤N

f(yj)

can be approximated by the truncation error of the integral

(2.20) Errtr = 2

∫ +∞

Λ
|f(y)|dy.

If Λ is large, then, on [Λ,+∞), we can use an approximation

χω1,ω;b(y) ∼ (b/2)eyeiω, χ′
ω1,ω;b(y) ∼ (b/2)eyeiω,

to derive an approximate upper bound

2

∫ +∞

Λ
|f(y)|dy ≤ 1

π

∫ +∞

Λ1

eRe(−ix′eiωρ−tψ(ρeiφ)dρ,

where Λ1 = (b/2)eΛ. The bound can be simplified (at the expense of some loss in accuracy) as

(2.21) Errtr(Λ1) ≤
etC0

π

∫ +∞

Λ1

e(x
′ sinω)ρ−tRe c∞(ω)ρνdρ,

where C0 = cΓ(−ν)[λν+ + (−λ−)ν ] in the case of KoBoL, and C0 = δ(α2 − β2)ν/2 in the case of

NTS processes. If c∞(ω) = c∞(0)eiων as in the cases of KoBoL and NTS, then (2.21) can be
written as

(2.22) Errtr(Λ1) ≤
etC0

π

∫ +∞

Λ1

e(x
′ sinω)ρ−tc∞(0) cos(ων)ρνdρ.
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Given the error tolerance ϵ > 0, one can find an approximation to Λ1 satisfying Errtr(Λ1) < ϵ
quite easily (see [7, 28, 30]), and then define

(2.23) Λ = ln(2Λ1/b), N = ceil(Λ/ζ).

2.4. The case ν ∈ (0, 1), x′ < 0. Since −ix′ξ − tψ0(ξ) ∼ −ix′ξ as ξ → ∞, we use the same
construction as above replacing γ− and γ+ with γ−0 = 0 and γ+0 = min{γ+, π}.

2.5. The case ν ∈ (0, 1), x′ > 0. We use the same construction as above replacing γ− and γ+

with γ−0 = max{γ−,−π} and γ+0 = 0.

2.6. The case ν = 1, x′ ̸= 0. For simplicity, consider the case c∞(φ) = c∞(0)eiφ, where
c∞(0) > 0 is independent of φ. As ρ→ +∞,

−ix′ρeiφ − tψ0(ρeiφ) = (−ix′ − tc∞(0))eiφ = −
√

(x′)2 + (tc∞(0))2ei(φ+φ0),

where φ0 = arctan(x′/(tc∞)). Hence, we use the same constructions as above with

(i) γ− = −π/2− φ0, γ
+ = π/2, if x′ < 0 (hence, φ0 < 0);

(ii) γ− = −π/2, γ+ = π/2− φ0, if x
′ > 0 (hence, φ0 > 0).

The bound for the truncation error (2.21) can be made explicit

(2.24) Errtr(Λ1) ≤
etC0

π(x′ sinω + tc∞ cosω)
e−(−x′ sinω+tc∞(0) cosω)Λ1 .

Given ϵ > 0, we find

(2.25) Λ1 =
ln(1/ϵ) + tC0 − ln(π(−x′ sinω + tc∞ cosω))

x′ sinω + tc∞ cosω
,

and then apply (2.23).

2.7. Complexity of the scheme based on the sinh-acceleration. As ϵ ↓ 0, Λ ∼ lnE,
where E = E(ϵ) = ln(1/ϵ), and ζ ∼ E/(2πd), where d < (γ+ − γ−)/2 is fixed. Hence, the
complexity of the scheme is of the order of A(d)E lnE, where A(d) can be arbitrarily close
to 1/(π(γ+ − γ−)) if d is chosen sufficiently close to (γ+ − γ−)/2. Note that if the integrand
admits the analytic continuation to an appropriate Riemann surface, then γ+ and/or −γ− can
be larger than π/2. In particular, then, for NTS and KoBoL of order ν ∈ (0, 1),

(i) if x′ = 0, then γ+ = −γ− = π/(2ν),
(ii) if x′ < 0, then γ+ = min{π, π/(2ν)}, γ− = 0;
(iii) if x′ > 0, then γ+ = 0, γ− = −min{π, π/(2ν)}.
This implies that, rather counter-intuitively, the (asymptotic) complexity of the scheme de-
creases with ν, whereas for the flat iFT and the scheme based on the fractional-parabolic
deformations, the complexity of the scheme increases as ν decreases.

Remark 2.3. The approximate bound for the complexity of the scheme derived above implic-
itly assumes that the strip is neither too wide nor too narrow, hence, b is neither too large
nor too small. If the width of the strip becomes too large or too small, the Hardy norm may
become too large. Hence, the approximations ln(2Λ1/b) ∼ ln Λ1 and ln(H/ζ) ∼ ln(1/ϵ) which
we used to access the complexity of the scheme may become not very accurate. The problem
of a too wide strip can be fixed using a moderately wide strip instead of a very wide one.
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If the strip S(µ−,µ+) is too narrow, but the Hardy norm does not tend to infinity as the strip
shrinks (the case of the NTS model and KoBoL models), then the sinh-change of variables
implies the rescaling which reduces the calculations to the case of a strip S(−d,d), where d = kdd0,

d0 = (γ+ − γ−)/2, kd = 0.9 − 0.95. Hence, a more accurate approximation of the truncation
parameter is lnΛ1 + ln(1/(µ+ − µ−)) instead of lnΛ1. Even if the initial strip is extremely
narrow, say, of the width 10−8, the recommended truncation parameter increases by less than
30, and the number of terms needed to satisfy even vary small error tolerance remains quite
moderate. In the case of the fractional-parabolic change of variables of order α (typically,

α ∈ (1, 2)), the truncation parameter increases by a factor of the order of (µ+−µ−)−1/α, which
can be large if µ+ − µ−, the width of the strip, is very small (see Section A.1 for the choice of
the parameters of the fractional-parabolic method and analysis of its complexity). However, it

is important that the angle γ− − γ+ between the rays eiγ
−R+ and eiγ

+R+ be not too small.

2.8. Numerical example. The calculations in the paper were performed in MATLAB c⃝ 8.0.0
(R2012b), on a PC with characteristics Intel (R) Core (TM) i7 CPU M 640, 2.80GHz, 8MB,
under the Genuine Windows 7 Professional operating system.

In Section B.1, Tables 1 and 2, we show the pdf of Xt with the characteristic exponent
(2.7) calculated using the sinh-acceleration, fractional parabolic change of variables and the
standard inverse Fourier transform method (flat iFT). The parameters of the process are µ = 0,
α = 10, β = 0 for t = 0.004; δ = m2λ

ν−2, where m2 = ψ′′(0) = 0.1 is the second instantaneous
moment. In Table 1, ν varies, and the pdf is calculated at the peak. In Table 2, ν = 0.3 is
fixed, and x varies.

For the flat iFT, we use the accurate prescriptions for the choice of the mesh size ζ derived
in [7], for the error tolerance ϵ = 10−7. By trial and error, we find that, due to the oscillation
of terms in the infinite trapezoid rule, it is possible to increase the size of the mesh: ζ/kζ where
kζ = 0.6. Hence, we may use a smaller number of terms in the simplified trapezoid rule to
satisfy a given error tolerance for the truncation error. Nevertheless, as the results shown in
Tables 1 and 2 demonstrate, the flat iFT may require extremely large number of terms. At
the same time, the sinh-acceleration allows one to satisfy a small error tolerance with several
dozen of terms; fractional-parabolic method is less efficient than the sinh-acceleration.

It is easily see that unless ν is not small, equivalently, the process is close to the BM, it is
essentially impossible to calculate the pdf at the peak sufficiently accurately and fast which is
needed for an efficient MLE. A similar problem arises when the cumulative pdf is calculated
and applied for simulation purposes.

3. Meromorphic SINH-regular distributions on R

3.1. Cumulative pdf in SINH-regular models. In this case, we need to evaluate the inte-
gral of the same type but with an additional factor −1/(iξ) under the integral sign:

(3.1) P[Xt < x] =
1

2π

∫
Im ξ=ω0

e−ix
′ξ−tψ0(ξ)

−iξ
dξ,

where ω0 ∈ (0, µ+). Since there is a pole at 0, we can apply the same scheme as in Section 2.3
replacing µ− with 0; the truncation parameter will be somewhat smaller due to the additional
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decaying factor 1/(iξ). To be more specific, instead of (2.21), we have the error bound

(3.2) Errtr(Λ1) ≤
etC0

π

∫ +∞

Λ1

e−(x′ sinω)ρ−tRe c∞(ω)ρνρ−1dρ.

If x′ > 0 or µ+ is small and −µ− > µ+, it is advantageous to move the line of integration in
(3.1) down, and, on crossing the simple pole, apply the residue theorem:

(3.3) P[Xt < x] = 1 +
1

2π

∫
Im ξ=ω′

0

e−ix
′ξ−tψ0(ξ)

−iξ
dξ,

where ω′
0 ∈ (µ−, 0). The integral on the RHS of (3.3) is calculated as in Section 2.3, with

µ+ = 0.

3.2. Puts and calls in SINH-regular models. Let r be the riskless rate, τ the time to
maturity, K the strike, and S the spot. Set x′ = ln(S/K) + µτ . Assuming that µ− < −1, the
price of the call option is given by

(3.4) Vcall(τ, S) = −Ke
−rτ

2π

∫
Im ξ=ω0

eix
′ξ−τψ0(ξ)

ξ(ξ + i)
dξ,

where ω0 ∈ (µ−,−1). The put price is given by the same integral but with ω0 ∈ (0, µ+), and
the price of the covered call by the same integral but with ω0 ∈ (−1, 0).

For the call, we use the same scheme as above with µ+ replaced with −1, for the put, µ−
is replaced by 0, and and for the covered call, we use µ− = −1, µ+ = 0. If x′ = 0, we use the
γ− < 0 < γ+ from the definition of the sinh-regular process to define ω = (γ+ + γ−)/2 and
use the conus Cγ−,γ+ to derive the recommendation for the choice of ζ and N ; if x′ > 0, we

replace γ− with 0 so that the wings of the deformed contour point upward and the factor eix
′ξ

decays as ξ → ∞ in the conus C0,γ+ used to derive the recommendations for the choice of ζ

and N , and set ω = γ+/2; if x′ < 0, we replace γ+ with 0 so that the wings of the deformed

contour point downward and the factor eix
′ξ decays as ξ → ∞ in the conus Cγ−,0 used to derive

the recommendations for the choice of ζ and N , and set ω = γ−/2. Note that in all cases,
A(ω) := −x′ sinω ≥ 0, B(ω) = τ Re c∞(ω) > 0.

The bound for the truncation error is

(3.5) Errtr(Λ1) ≤
eτC0

π

∫ +∞

Λ1

e(x
′ sinω)ρ−τ Re c∞(ω)ρνρ−2dρ.

We can use a more stringent bound

(3.6) Errtr(Λ1) ≤
eτC0

πΛ1
e(x

′ sinω)Λ1−τ Re c∞(ω)Λν
1 .

Given the error tolerance ϵ > 0, we have the equation for Λ1:

(3.7) F (Λ1) := A(ω)Λ1 +B(ω)Λν1 + lnΛ1 − C = 0,

where C = τC0 − ln(πϵ). The equation can be solved easily and fast since it is unnecessary to
achieve a high precision.
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3.3. Pricing European puts and calls in the Heston model. Consider the Heston model
[19] with constant riskless and dividend rates r and δ on stock (or exchange rate) St. To be
more specific, we assume that, under an EMM Q chosen for pricing, St and the stock volatility
vt follow the system of stochastic differential equations (SDE)

dSt
St

= (r − δ)dt+
√
vtdŴ1,t,(3.8)

dvt = κ(m− vt)dt+ σ0
√
vtdW2,t,(3.9)

where Ŵ1,t,W2,t are components of the Brownian motion in 2D with unit variances and corre-
lation coefficient ρ. Starting with [19], prices of European options in the Heston model have
been calculated using the Fourier transform technique (the first instance of using this standard
technique in finance). For an overview of different realizations of the pricing formula, see [28].
Below, we will use the realization derived in [28]. Let Vput(t, St, vt) and Vcall(t, St, vt) be the
put and call options on St with strike K and maturity date T , at time t < T .

Theorem 3.1 ([28]). Let τ = T − t be the time to maturity and let λ−(τ) < −1 < 0 < λ+(τ)

be reals such that EQ[S
λ±(τ)
T | St, vt] <∞. Then, for any ω0 ∈ (0, λ+(τ)),

(3.10) Vput(t, St, vt) = −Ke
−rτ

2π

∫
Im ξ=ω0

eiξzt+(vtB0(τ,ξ)+C0(τ,ξ))/σ2
0

ξ(ξ + i)
dξ,

and for any ω0 ∈ (λ−(τ),−1),

(3.11) Vcall(t, St, vt) = −Ke
−rτ

2π

∫
Im ξ=ω0

eiξzt+(vtB0(τ,ξ)+C0(τ,ξ))/σ2
0

ξ(ξ + i)
dξ,

where zt = log(St/K)− (ρ/σ0)vt + µ0τ , µ0 = r − δ − κmρ/σ0,

B0(τ, ξ) = (κ−R(ξ))
1−D1(ξ)e

−τR(ξ)

1−D(ξ)e−τR(ξ)
(3.12)

C0(τ, ξ) = κm

(
(κ−R(ξ))τ − 2 ln

1−D(ξ)e−τR(ξ)

1−D(ξ)

)
,(3.13)

R(ξ) =
√
κ2 + (σ20 − 2ρκ)iξ + σ20(1− ρ2)ξ2(3.14)

D(ξ) =
ρσ0iξ − κ+R(ξ)

ρσ0iξ − κ−R(ξ)
(3.15)

D1(ξ) = D(ξ)
κ+R(ξ)

κ−R(ξ)
(3.16)

Remark 3.1. a) Let {Im ξ ∈ (λ−(τ), λ+(τ))} be the maximal strip of analyticity of the char-
acteristic function. Introduce a quadratic polynomial P (β) = κ2− (σ20 − 2ρκ)β−σ20(1− ρ2)β2,
and denote by λ0− < 0 < λ0+ its roots. It is proved in [28] that λ−(τ) ≤ λ0− and λ0+ ≤ λ+(τ),
and a procedure for the calculation of λ−(τ) and λ+(τ) is derived. As numerical examples in
[28] indicate, typically, λ0− and λ0+ are rather close to λ−(τ) and λ+(τ), respectively, hence,
there is no sizable advantage in using a rather complicated procedure for the calculation of
λ−(τ) and λ+(τ). In the numerical procedure of the present paper, we will use λ0− and λ0+.



14 SVETLANA BOYARCHENKO AND SERGEI LEVENDORSKĬI

b) As it is proved in [35], the (conditional) characteristic function admits the analytic con-
tinuation to the complex plane with the cuts i(−∞, λ−(τ)] and i[λ+(τ),+∞), hence, to the
complex plane with the cuts i(−∞, λ0−] and i[λ

0
+,+∞).

Choose the strip of analyticity S(λ0−,−1), S(−1,0), or S(0,λ0+), and move the line of integration

into the strip; use the residue theorem when a pole (or the two poles) of the integrand is (are)
crossed. Unless a strip is too narrow or wide (see Remark 2.3), one should choose a curve in
the upper half-plane if zt > 0, and in the lower half-plane if zt < 0. Otherwise, the universal
recommendation for the choice of the truncation parameter becomes inaccurate: one must add
the length of the part of the deformed contour which is in the “incorrect” half-plane where the
factor eiztξ is large in the absolute value.

Let S(µ−,µ+) be the chosen strip. It follows from Remark 3.1 that the conditional distribution

of the price is sinh-regular of order ν = 1 and type ((µ−, µ+); C−π/2,π/2, C−γ−,γ+), where γ± are
defined as for elliptic Lévy processes of order ν = 1 with x′ = zt and

c∞(φ) =
1

σ20
lim

ρ→+∞
ρ−1(vtB0(τ, ρe

iφ) + C0(τ, e
iφ)).

To find c∞(φ), we calculate the asymptotics of R(ξ), D(ξ), B0(τ, ξ) and C0(τ, ξ) as ξ → ∞
remaining in the right-half plane:

R(ξ) = σ0(1− ρ2)1/2ξ

(
1 +

σ20 − 2ρκ

σ20(1− ρ2)
iξ−1 +O(ξ−2)

)1/2

(3.17)

= σ0(1− ρ2)1/2ξ + i
σ20 − 2ρκ

2σ20(1− ρ2)
+O(ξ−1)

1−D(ξ) =
−2R(ξ)

ρσ0iξ − κ−R(ξ)
=

−2

ρσ0iξ/R(ξ)− 1 +O(ξ−1)
(3.18)

=
2

1− iρ/(1− ρ2)1/2
+O(ξ−1)

vtB0(τ, ξ) + C0(τ, ξ) = (vt + κmτ)(κ−R(ξ)) + 2κm ln(1−D(ξ)) +O(ξ−1)(3.19)

= −(vt + κmτ)

(
σ0(1− ρ2)1/2ξ − κ+ i

σ20 − 2ρκ

2σ0(1− ρ2)1/2

)
+2κm ln(1−D(ξ)) +O(ξ−1)

e2κm ln(1−D(ξ) =

(
2

1− iρ/(1− ρ2)1/2

)2κm

.(3.20)

It follows that, as ξ → ∞ in the right half-plane, the integrand on the RHS of (3.11) has the
following asymptotics:

(3.21) C∞
eiztξ−c∞(0)ξ

ξ2
(1 +O(ξ−1)),
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where

C∞ =
Ke−rτ

2π

(
2

iρ/(1− ρ2)1/2 − 1

)2κm

(3.22)

· exp
[
(vt + κmτ)

(
κ− i

σ20 − 2ρκ

2σ0(1− ρ2)1/2

)]
,

c∞(0) = (vt + κmτ)σ0(1− ρ2)1/2.(3.23)

Note that

(3.24) |C∞| = Ke−rτ

2π
e(vt+κmτ)κ

(
4(1− ρ2)

)κm
.

Set φ0 = − arctan(zt/c∞(0)), and

(i) γ− = −π/2− φ0, γ
+ = π/2, if zt > 0 (hence, φ0 < 0),

(ii) γ− = −π/2, γ+ = π/2− φ0, if zt < 0 (hence, φ0 > 0).

Thus, γ− ∈ [−π/2, 0), γ+ ∈ (0, π/2]. We define ω and d0 by (2.13), then ω+ d0 = γ+, ω− d0 =
γ−. Next, we must ensure that the intersection of the imaginary axis and the image of S(−d0,d0)
under χω1,ω;b is a subset of i(µ−, µ+), which is equivalent to ω1 + ba+ ≤ µ+, ω1 − b ≥ a−µ−,
where a− = − sin γ−, a+ = sin γ+. Hence, we define ω1 and b0 by (2.14). We choose d < d0,
b < b0 close to d0, b0, respectively, e.g., d = 0.95d0, b = 0.95d0, and, for the given error tolerance,
set ζ = 2πd/(ln(H(f, d)/ϵ) ∼ 2πd/E, where E = ln(1/ϵ).

The approximate bound for the truncation error is

(3.25) Errtr(Λ1) ≤ 2|C∞|e−(zt sinω+c∞(0) cosω)Λ1/Λ1.

Given ϵ > 0, we find a moderately accurate approximation to the solution of the equation

(3.26) (zt sinω + c∞(0) cosω)Λ1 + lnΛ1 − ln(|C∞|/ϵ) = 0,

and then calculate Λ = ln(2Λ1/b), N = ceil(Λ/ζ).

3.4. Complexity of the scheme. As ϵ ↓ 0, Λ ∼ lnE, where E = E(ϵ) = ln(1/ϵ), and
ζ ∼ E/(2πd), where d < (γ+ − γ−)/2 is fixed. Hence, the complexity of the scheme is of
the order of A(d)E lnE, where A(d) = 1/(2πd) < 2/π2 if d is chosen sufficiently close to
(γ+ − γ−)/2 > π/4.

Remark 3.2. For the calibration of the model, calculations need to be done many times. The
trick explained in Section A.2 allows one to use µ− = λ0−, µ+ = λ0+, hence, a larger ζ and
smaller grid, which decreases the CPU time.

3.5. Numerical results. In Section B.2, Tables 3-8, we produce results for European put in
the Heston model, and compare the performance of the sinh-acceleration with the fractional-
parabolic change of variables. We adjust the recommended ζ and Λ = Nζ dividing ζ by kζ
and multiplying Λ by kΛ. We show ζ, N and the resulting errors for each choice of ϵ, kζ and
kΛ. The errors (rounded) are calculated with respect to the benchmark prices (rounded). The
latter are obtained using several sets of the parameters of the numerical scheme; the results
differed by less than E-13. Time: the CPU time in msc of calculations for each point, the
average over 1000 runs.
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In Table 9, we compare the performance of the sinh-acceleration method with the Lewis-
Lipton and Carr-Madan realizations of the flat iFT method. In all cases, the standard pre-
scriptions (ζ = 0.125, N = 4096) imply negligible truncation errors, hence, the errors shown
are, essentially, the discretization errors.

4. Options on bond in the CIR model

4.1. Characteristic function. In the CIR model, the state space is R+, the dynamics of the
short rate is given by

(4.1) drt = κ(θ − r)dt+ σ
√
rtdWt,

where κ, θ, σ > 0, and dWt is the increment of the standard Wiener process. For t < T and
r > 0, the characteristic function

W (t, T ; r, ξ) = EQ,r
t

[
exp

(
−
∫ T

t
rsds

)
eiξrT

]
, ξ ∈ R,

is of the form

(4.2) W (t, T ; r, ξ) = exp[B(τ, ξ)r + C(τ, ξ)],

where τ = T − t, and B, C can be found solving the system of Riccati equations associated
with the model. We reproduce the well-known solution in Section A.3, in the form convenient
for application of the sinh-acceleration method. We will use the representation

B(τ, ξ) =
B+B− + iξB+,n(τ)

B++(τ)− iξ
,(4.3)

C(τ, ξ) = κθ

[
B−τ +

2

σ2
ln

B+ −B−

1− e−τ
√
κ2+2σ2

− 2

σ2
ln(B++(τ)− iξ)

]
,(4.4)

where B± = (κ±
√
κ2 + 2σ2)/σ2,

B+,n(τ) =
B+e

−τ
√
κ2+2σ2 −B−

1− e−τ
√
κ2+2σ2

,(4.5)

B++(τ) =
B+ −B−e

−τ
√
κ2+2σ2

1− e−τ
√
κ2+2σ2

.(4.6)

Lemma 4.1. a) The characteristic function is analytic in C \ i(−∞,−B++(τ)].
b) As ξ → ∞ remaining in C \ i(−∞,−B++(τ)],

(4.7)
∣∣∣eB(τ,ξ)r+C(τ,ξ)

∣∣∣ ∼ C∞(τ, r)|ξ|−2κθ/σ2
,

where

(4.8) C∞(τ, r) =

(
B+ −B−

1− e−τ
√
κ2+2σ2

)2κθ/σ2

exp

[
r
B+ −B−e

τ
√
κ2+2σ2

1− eτ
√
κ2+2σ2

+ κθB−τ

]
.

Proof. a) It follows from (4.3) and (4.4) that B(τ, ξ) is meromorphic in C with the only simple
pole at the root of the equation

iξ −B− − (iξ −B+)e
τ
√
κ2+2σ2

= 0,
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which is −B++(τ), and C(τ, ξ) is analytic in C \ i(−∞, B++(τ)].
b) As ξ → ∞, Λ(ξ) → 1, hence, (4.7)-(4.8) follow from (4.3) and (4.8). �

4.2. The bond price. We let ξ = 0 in the formula for the characteristic function

P (T, r) = exp[B(T, 0)r + C(T, 0)].

Since Λ(0) = B+/B−, we have

B(T, 0) =
B+ −B−(B+/B−)e

T
√
κ2+2σ2

1− (B+/B−)eT
√
κ2+2σ2

= B−
eT

√
κ2+2σ2 − 1

eT
√
κ2+2σ2 −B−/B+

= B−
1− e−T

√
κ2+2σ2

1− (B−/B+)e−T
√
κ2+2σ2

,

C(T, 0) = κθ

[
B−T + 2σ−2 ln

1−B−/B+

1− (B−/B+)e−T
√
κ2+2σ2

]
.

4.3. Call and put options. Consider now the call option with the maturity date τ and strike
K < eC(T,0), on the bond maturing at T + τ . Set zT,K = (C(T, 0) − lnK)/B(T, 0). Since
B(T, 0) < 0, the Fourier transform of option’s payoff

G(ξ) =

∫
R
e−irξ(eB(T,0)r+C(T,0) −K)+dr =

KB(T, 0)eizT,Kξ

ξ(ξ + iB(T, 0))
,

is well-defined in the half-plane {Im ξ > −B(T, 0)}, and admits meromorphic continuation
to the complex plane with two simple poles at 0 and −iB(T, 0). The characteristic function
exp[B(τ, ξ)r + C(τ, ξ)] of rτ |r admits analytic continuation to the complex plane with the cut

i(−∞,−B++(τ)], and decays as |ξ|−2κθ/σ2
as ξ → ∞ in the complex plane with the cut.

Hence, the price of the call option on the bond can be calculated as

(4.9) Vcall(τ, r) =
KB(T, 0)

2π

∫
Im ξ=ω0

eizT,Kξ+B(τ,ξ)r+C(τ,ξ)

ξ(ξ + iB(T, 0))
dξ,

where ω0 > −B(T, 0) is arbitrary. The integrand is meromorphic in C \ i(−∞,−B++(τ)],
with two simple poles at 0 and −iB(T, 0), hence, we have 3 strips of the analyticity S(−B++,0),
S(0,−B(T,0)) and S(−B(T,0),+∞) of the integrand. We can move the line of integration into
any strip or, as we outlined in the case of the Heston model, get rid of both simple poles
at 0 and −iB(T, 0) and reduce to the integrand analytic in the complex plane with the cut
i(−∞,−B++(τ)]. On crossing one or two poles, we apply the residue theorem. When both
poles are crossed, we obtain the price of the put. Thus,

(4.10) Vcall(τ, r) = Vput(τ, r) + ezT,KB(T,0)P (T + τ, r)−KP (τ, r),

which can be used to double-check the accuracy of calculations. Indeed, if Vcall(τ, r) and
Vput(τ, r) are calculated directly, with no pole crossed, then a random agreement between the
two completely differently sums, with the difference of the order of 1012, say, has a negligible
probability unless the errors of both results are of the same order of magnitude.

Let S(µ−,µ+) be the chosen strip. According to the general scheme, the choice of the param-
eters of the sinh-acceleration depends on the sign of zT,K . If zT,K = 0, we can apply the sinh-
acceleration with γ− = −π/2, γ+ = π/2; if zT,K > 0 with γ− = 0, γ+ = π/2; and if zT,K < 0,
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with γ− = −π/2, γ+ = 0. If zT,K ≥ 0, then, for any r ≥ 0, exp[B(T, 0)r + C(T, 0)] ≤ K,
hence, the price of the call option is 0, and it is unnecessary to apply a numerical method to
recover this zero. However, to test the accuracy of the method, we applied our general recom-
mendations to this case as well, and, in numerical examples, verified that the call option price
calculated numerically is of the order of the error tolerance used to choose the parameters of
the scheme.

We define ω and d0 by (2.13), and ω1 and b0 by (2.14). We choose d < d0, b < b0 close
to d0, b0, respectively, e.g., d = 0.95d0, b = 0.95d0. Then, after the change of variables (1.2),
the integrand in the pricing formula, denote it f(y), admits analytic continuation to the strip
S(−d,d) and decays sufficiently fast as y → ∞ remaining in the strip. The Hardy norm (2.16)
is finite and can be approximated well by (2.18). To satisfy a small error tolerance ϵ > 0, we
choose ζ = 2πd/(ln(H(f, d)/ϵ) ∼ 2πd/E, where E = ln(1/ϵ).

The truncation error of the simplified trapezoid rule can be approximated by the truncation
error of the integral (2.20). The rate of decay of the integrand is the smallest if zT,K = 0. In
this case, the integrand decays as

K(−B(T, 0))C∞(τ, r)

2π
|ξ|−2−2κθ/σ2

(see (4.7)-(4.8)), therefore, given the error tolerance ϵ, we can find Λ1 = beΛ/2 from

K(−B(T, 0))C∞(τ, r)

π

∫
Λ1

y−2−2κθ/σ2
dy = ϵ,

which gives Λ1 = ϵ
−1/(1+2κθ/σ2)
1 , where ϵ1 = ϵ(1 + 2κθ/σ2)/(K(−B(T, 0))C∞(τ, r)). Thus,

Λ = ln(2/b) + (1 + 2κθ/σ2)−1 ln(1/ϵ1), N = ceil(Λ/ζ).

If zT,K ̸= 0, then |ω| = π/4, and Re(izT,Kξ) ∼ −c∞(T,K)|ξ| along the contour ξ =

χω1,ω,b(R), where c∞(T,K) = |zT,K sinω|. Hence, we need to find Λ1 = beΛ/2 satisfying

K(−B(T, 0))C∞(τ, r)

π

∫
Λ1

e−c∞(T,K)yy−2−2κθ/σ2
dy ≤ ϵ.

We solve a stronger equation

e−c∞(T,K)Λ1Λ
−1−2κθ/σ2

1 = ϵ1,

equivalently,

F (Λ1) := c∞(T,K)Λ1 + (1 + 2κθ/σ2) lnΛ1 − ln(1/ϵ1) = 0,

as follows: Λ1 = (1/c∞(T,K)) ln(1/ϵ1),

Λ1 := Λ1 −
1 + 2κθ/σ2

c∞(T,K)
lnΛ1.

Finally, we calculate Λ = ln(2Λ1/b), N = ceil(Λ/ζ).

Remark 4.1. (1) If zT,K ̸= 0 (and not too small in absolute value), then the rate of decay
is, essentially, as in the case of the call option in regular SINH-models of order ν ∈ (0, 1)
and non-zero x′. However, if zT,K is zero or close to zero, then the number of terms
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needed to satisfy a given error tolerance can be larger - and very large if the sinh-
acceleration is not used. Even the fractional-parabolic deformation requires 10 times
more terms (for some parameters, even more) to achieve the same accuracy.

(2) Formally, one should use the widest strip S(−B(T,0),+∞) and choose an arbitrary large
ω0 > −B(T, 0). However, if ω0 is large, then the simplified general recommendations
for the choice of ζ and, especially, Λ can become too inaccurate. Indeed, if zT,K < 0,
then the wings of the curve Lω1,ω;b := χω1,ω;b(R) point downward, and we can truncated
the sum in the infinite trapezoid rule where the integrand becomes sufficiently small.
However, if ω0 > 0 is not small, the significant number of points ξj = χω1,ω;b(yj) =
iω1 + b sinh(iω + yj) used in the simplified trapezoid rule are in the upper half-plane
but the simplified recommendation implicitly presumes that all the points are in the
low half-plane.

Thus, if ω0 > 0 and zT,K < 0, we need to modify the prescription above by adding
to Λ the half-length Λ0 of the intersection of the curve Lω1,ω;b with the upper half-
plane. To find Λ0, we solve the equality ω1 + b Im sinh(iω + y) = 0, equivalently,
ey − e−y + 2ω1/(b sinω) = 0. Thus,

Λ0 = −ω1/(b sinω) +
√

(ω1/b sinω)2 + 1),

and Λ = ln(2Λ1/b) +Λ0, N = ceil(Λ/ζ). This increases the number of terms. Hence, it
is advisable to choose ω0 ∈ (−B++, 0) unless B++ is very small.

4.4. Numerical examples. A numerical example in Section B.3 (Table 10) shows that the
sinh-acceleration is significantly faster than the fractional-parabolic method (the number of
terms is 10-30 times fewer and the CPU time in Matlab realization is about 5 times smaller);
the flat iFT can satisfy the error tolerance 10 mln times larger only when the number of terms
is of the order of 105, and the CPU time is 100 times larger.

5. Subordination

We consider the following example. Let yt be the square root process with the dynamics

(5.1) dyt = κ(θ − yt)dt+ λ
√
ytdWt,

where κ > 0, λ > 0, θ > 0 and dWt is the increment of the standard Wiener process. A popular

subordinator Yt =
∫ t
0 ysds conditioned on y0 has the characteristic function

ΦCIR(t, y0; η) := E
[
eiξYt | Y0 = y0

]
=

exp(κ2θt/λ2) exp(2y0iη/(κ+ u(η) coth(u(η)t/2)))

[cosh(u(η)t/2) + κ sinh(u(η)t/2)/u(η)]2κθ/λ
2 ,(5.2)

where u(η) =
√
κ2 − 2λ2iη. The pdf of Yt|Y0 = y0 is

(5.3) p(y0; τ) =
1

2π

∫
R
e−iτηΦCIR(t, y0; η)dη.

Since τ > 0, and ΦCIR(t, y0; η) is uniformly bounded on the domain of analyticity, we must use
a cone in the lower half plane Im η < 0. Since u(η) is analytic in the complex plane with the
cut i(−∞,−κ2/(2λ2)], the simplest choice is γ− = −π/2, γ+ = 0, ω = −π/4, d0 = π/4.
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Lemma 5.1. a) For η ∈ C \ i(−∞,−κ2/(2λ2)], Reu(η) > 0.
b) Fucntion R ∋ η 7→ ΦCIR(t, y0; η) ∈ C admits analytic continuation to C \ i(−∞,−κ2/(2λ2)].

Proof. a) is evident. b) We set γ = 2λθ/λ2, w = w(η) = e−u(η)t/2, and rewrite the denominator
on the RHS of (5.2) as

[cosh(u(η)t/2) + κ sinh(u(η)t/2)/u(η)]2κθ/λ
2

(5.4)

=
eγu(η)t/2

(2u(η))γ
(1 + w2)γ

(
u(η) + κ

1− w2

1 + w2

)γ
.

Since Reu(η) > 0, w1 := w(η)2 = e−u(η)t/2 belongs to the unit open disc D, hence, the
fraction on the RHS of (5.4) and the factor (1 + w2)γ are well-defined analytic functions on
C \ i(−∞,−κ2/(2λ2)]. To prove that the same statement holds for the last factor, it suffices
to show that (1 − w2)/(1 + w2) is in the right half-plane if w2 ∈ D. Let w2 = a + ib, where
a2 + b2 < 1. Then

Re
1− w2

1 + w2
= Re

(1− a)− ib

1 + a+ ib
= Re

((1− a)− ib)(1 + a− ib)

(1 + a)2 + b2
=

1− a2 − b2

(1 + a)2 + b2
> 0.

�

The pricing formula for European options in the CIR-subordinated Lévy models changes as
follows. Instead of the expectation E[eiξXτ | X0 = x] = eixξ−τψ(ξ), we have the expectation
E[eiξXYτ | X0 = x, Y0 = y0] = eixξΦCIR(τ, y0; iψ(ξ)). Hence,

(5.5) Vcall(S,K; y0, τ) = −Ke
−rτ

2π

∫
Im ξ=ω0

eixξΦCIR(τ, y0; iψ(ξ))

ξ(ξ + i)
dξ,

where x = ln(S/K) and ω0 < −1 is such that, for all ξ on the line Im ξ = ω0, iψ(ξ) is in the
complex plane with the cut i(−∞,−κ2/(2λ2)], equivalently, ψ(ξ) is in the complex plane with
the cut (−∞,−κ2/(2λ2)]. This implies that the CIR subordinator must satisfy the condition
κ2/(2λ2) > −ψ(−i).

Applying the sinh-acceleration, we need to choose the parameters of the scheme so that

(1) the image of the strip S(−d0,d0) under the composition y 7→ ψ(χω1;ω,b(y)) belongs to the

complex plane with the cut (−∞,−κ2/(2λ2)] or to an appropriate Riemann surface;
(2) if x > 0, then χω1;ω,b(S(−d0,d0)) must be a subset of a half-plane of the form Im ξ > a, where

a ∈ R is a constant;
(3) if x < 0, then χω1;ω,b(S(−d0,d0)) must be a subset of a half-plane of the form Im ξ < a, where

a ∈ R is a constant.

Furthermore, in cases when ΦCIR(τ, y0; iψ(ξ)) admits analytic continuation to an appropriate
Riemann surface, it is advisable to choose the parameters of the sinh-acceleration so that the
deformed contour Lω1;ω,b = χω1;ω,b(R) remains in the complex plane and additional operations
in the program caused by appropriate phase shifts are not needed. If the deformed contour
crosses a cut, the number of terms in the simplified trapezoid rule decreases somewhat but the
number of elementary operations needed to evaluate individual terms increases. The total gain
is small if any.
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Let X be an elliptic sinh-regular process of type ((λ−, λ+); C, C+) and order ν ∈ (0, 2], where
and λ− < 0 < λ+; furthermore, as ξ → ∞ in the conus C,

ψ0(ξ) ∼ c∞e
iφν |ξ|ν , ξ → +∞,

where φ = arg ξ, and c∞ > 0.
First, we find a strip S(µ−,µ+) of analyticity of ΦCIR(t, y0; iψ(ξ)). Here µ− < 0 < µ+ are

such that κ2 + 2λ2ψ(iµ) > 0 for all µ ∈ (µ−, µ+). Since µ 7→ ψ(iµ) is convex on (λ−, λ+) and
ψ(0) = 0, we conclude that if κ2 + 2λ2ψ(i(λ+ − 0)) ≥ 0, then µ+ = λ+, otherwise µ+ is the
only positive solution of the equation κ2+2λ2ψ(iµ) = 0. Similarly, if κ2+2λ2ψ(i(λ−+0)) ≥ 0,
then µ− = λ−, otherwise µ− is the only positive solution of the equation κ2 + 2λ2ψ(iµ) = 0.

Next, we need to find a conus of analyticity, and calculate the asymptotics of ΦCIR(t, y0; iψ(ξ))
as ξ → ∞ remaining in the conus. We consider two cases.

I. ν ∈ (1, 2] or ν ∈ (0, 1) and µ = 0. Then ψ(ξ) = iµξ + ψ0(ξ) enjoys the same properties as
ψ0, and

ψ(ξ) ∼ c∞e
iφν |ξ|ν , ξ → +∞.

If ν = 1, the asymptotic coefficient and argument depend on µ:

ψ(ξ) ∼ c∞(µ)ei(φ+γ(µ))|ξ|, ξ → +∞.

Thus, there exist −π ≤ γ− < 0 < γ+ ≤ π such that for any φ ∈ (γ−, γ+),

ψ(ρeiφ) ∼ c∞(φ)ρν , ρ→ +∞,

where c∞(φ) ̸∈ (−∞, 0]. Hence, for any φ ∈ (γ−, γ+),

(κ2 + 2λ2ρeiφ)1/2 ∼ c∞(φ)1/2ρν/2, ρ→ +∞,

where Re c∞(φ)1/2 > 0.

The argument above almost proves that (κ2 + 2λ2ψ(ξ))1/2 admits analytic continuation
to i(µ−, µ+) + Cγ−,γ+ . We say almost because the proof above demonstrates that, for ξ ∈
i(µ−, µ+) + Cγ−,γ+ , κ2 +2λ2ψ(ξ) ̸∈ (−∞, 0] if ξ is in a certain neighborhood of 0 and a certain
neighborhood of infinity. For NTS and KoBoL of order ν ∈ [1, 2], one can demonstrate that
the image of i(µ−, µ+) + Cγ−,γ+ under the map ξ 7→ κ2 + 2λ2ψ(ξ) does not intersect (−∞, 0];
in general case, one should study the image on the case-by-case basis, and, if necessary, use
µ± closer to 0. Note that it suffices to ensure that the image does not intersect the essentially
singular point 0, which is a much weaker condition. If the image intersects (−∞, 0) but does
not contain 0, the image is a subset of an appropriate Riemann surface, and a larger ζ can be
chosen. However, it is advantageous to choose the parameters of the sinh-acceleration so that
the image of the deformed contour under the map ξ 7→ κ2+2λ2ψ(ξ) is a subset of the complex
plane, and there is no need to introduce phase shifts in the pricing formula, when the cut is
crossed.

Once i(µ−, µ+) + Cγ−,γ+ is found, we define the parameters of the sinh-acceleration and
choose ζ for the given error tolerance using the general prescriptions. It remains to find the
truncation parameterand N . If follows from (2.23) that as ξ = ρeiφ → ∞ remaining in Cγ−,γ+ ,

|ΦCIR(t, y0; iψ(ξ))| ≤ (1 + o(1)) exp(κ2θt/λ2 −B(φ)ρν/2).

where
B(φ) =

√
2λRe(c∞(φν)1/2)(t/2)2κθ/λ2 =

√
2Re(c∞(φν)1/2)tκθ/λ.
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Hence, we can find the truncation parameter Λ = ln(2Λ1/b) solving approximately the equality

e−A(ω,x)Λ1−B(ω)Λ
ν/2
1 ρ−1 = ϵ1,

where A(ω, x) = |x sinω|, ϵ1 = ϵπ exp(rτ − κ2θt/λ2)/K, as follows.
If ν = 1, then

Λ1 := ln(1/ϵ1)/(A(ω) +B(ω)), Λ1 := max{2,Λ1 − lnΛ1/(A(ω) +B(ω))};
if F := (A(ω, x) +B(ω))Λ1 + lnΛ1 − ln(1/ϵ1) < 0, then

Λ1 := Λ1 − F/(A(ω) +B(ω) + 1/Λ1).

If ν ∈ (1, 2] or ν ∈ (0, 1) and µ = 0, then we set

Λ1 = (ln(1/ϵ1)/B(ω)2/ν , Λ1 =

(
max{2, ln(1/ϵ1)−A(ω)Λ1 − lnΛ1}

B(ω)

)2/ν

;

if F := A(ω, x)Λ +B(ω)Λ
ν/2
1 + lnΛ1 − ln(1/ϵ1) < 0, then Λ1 := Λ1 − F/DF , where

DF := A(ω, x) + (ν/2)B(ω)Λν/2−1 + 1/Λ1.

Note that if B(ω) is very small and |x| is not very small, then it is safer to use the same rule
as in the case ν = 1; this leads to a moderate overkill.

II. ν ∈ (0, 1) and µ ̸= 0. If x > 0, we take arbitrary 0 < γ− < γ+ < π/2; as ξ → ∞
remaining in Cγ−,γ+ , κ2 − 2λ2iψ(ξ) ∼ κ2 − 2λ2µξ, hence, if µ > 0, then

u(iψ(ρeiφ)) ∼ ei((φ−π/2)ρ1/2, ρ→ +∞,

and if µ < 0, then

u(iψ(ρeiφ)) ∼ ei(φ/2)ρ1/2, ρ→ +∞.

If φ ∈ (0, π), cos(φ − π/2) > 0 and cos(φ/2) > 0. Hence, if ν ∈ (0, 1) and µ ̸= 0, the rate of
the decay of the integrand is as in the case ν = 1 but the asymptotic coefficient is different.
We leave the details to the reader.

The results of a numerical experiment can be found in Table 11.

6. Quantiles of KoBoL and Monte-Carlo simulations

6.1. One-factor KoBoL. We consider efficient evaluation of quantiles, that is, solution of
the equation F (x) = A, where A ∈ (0, 1) and F is the cumulative distribution function; once
an efficient procedure for quantile evaluation is available, the procedure can be used for the
Monte-Carlo simulations.

Monte-Carlo simulation remains to this day the most universal method of pricing path-
dependent options on financial assets. In the case of Lévy-driven models, a basic building block
of any Monte-Carlo method is the simulation of an increment of the underlying Lévy process.
In some situations — for instance, the Variance Gamma model [38, 37, 36] — the process
can be expressed in terms of simpler ones using time subordination, and hence its increments
can be simulated (almost) exactly. However, in other cases no exact simulation algorithm is
known. Madan and Yor [39] proposed an algorithm for simulating KoBoL increments based on
representing the process as Brownian motion subordinated by a stable Lévy process, truncating
the small jumps of the subordinator and replacing them with their average. However, as
extensive numerical examples in [4] demonstrate, an efficient implementation of the standard
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approach described below is 10-100 faster; the variation which we introduce in this Section, is
much faster and more accurate than the realization in [4].

If Z is any random variable with continuous distribution, one can simulate Z sampling a
uniformly distributed random variable U on (0, 1) and calculate F−1(U), where F denotes the
cumulative distribution function of Z. When an explicit formula for F−1 is not available, it
becomes important to be able to calculate its values very quickly and sufficiently accurately.
A straightforward approach that was used with a limited success for simulation of stable Lévy
processes (the tails of the distributions decay too slowly, hence, the Monte-Carlo simulations are
moderately efficient only if the index of the process is close to 2, and the distribution does not
differ much from the normal distribution, with the exception of far parts of the tails, which can
be safely disregarded in this case) is as follows. One tabulates the values of F on a sufficiently
long and fine grid of points x0, x1, . . . , xM on the real line and approximates F−1 using linear
interpolation. This method is very attractive from the practical viewpoint, because the values
F (xi) only have to be calculated once, and afterward the computational cost of each simulation
of Z is extremely low: one has to draw a sample A of U , find j satisfying F (xj) ≤ A < F (xj+1)
(which requires about log2(M) comparisons) and perform 4–5 arithmetic operations required
for linear interpolation:

(6.1) x = xj + (xj+1 − xj)(A− Fj)/(Fj+1 − Fj).

If A < F1, one assigns x = x1, and if A > FM , then one assigns x = xM . In many important
examples, an explicit formula is known for the characteristic function of the random variable Z.
In such a case, the calculation of the values F (xi) reduces to computing certain inverse Fourier
transforms (see Glasserman and Liu [16, 18]). In the case of Lévy processes with exponentially
decaying tails, the problem of a slow decay is less serious than in the case of stable Lévy
processes unless the exponential rate is too small but the peak of the probability distribution
remains very high if the order of KoBoL is close to 0.

In the application to the Monte-Carlo simulations, this method has 3 sources of errors:

(1) truncation error;
(2) errors of linear interpolation;
(3) errors of evaluation of Fk.

A popular approach (see, e.g., [16, 17, 18, 12, 1, 15]) is to use either the fast Fourier transform
(FFT) or fast Hilbert transform (fast HT), which allows one to calculate the values Fk at all
points of interest faster than point-by-point, especially if the number of points is large. This
approach faces the following fundamental difficulties:

(a) if the time step is small, which is necessary for accurate simulation of barrier options with
continuous monitoring, then, in a neighborhood of x′ = 0, the F ′(x) = p(x) is very large,
hence, in order that the linear interpolation (6.1) be sufficiently accurate, the size of the
mesh ∆x = xj+1−xj must be very small; in fact, even in relatively nice cases of ν ∈ (0.5, 1),
∆x = 10−5 can lead to interpolation errors greater than 10−8 (see an example below); for
ν closer to 0, much smaller ∆x can be insufficient;

(b) if one of the steepness parameters λ± is small in the absolute value, e.g., λ+ > 0 is small,
then x1 must be negative and very large in absolute value to ensure that the truncation
error in the neighborhood of −∞ is sufficiently small. In view of difficulty (a), the total
number of points can be measured in millions and dozens of million;
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(c) as examples in Section 2 demonstrate, accurate evaluation of F (xk) for xk large in the
absolute value can be either too time consuming or virtually impossible if the flat FT is
used; the same difficulties arise is HT is used.

The sinh-acceleration allows us to calculate Fk = F (xk) very accurately and fast; for xk large
in absolute value, especially fast. The fractional-parabolic method used in [4] to calculate Fk is
faster and more accurate than FFT and HT-based methods but, after the fractional-parabolic
change of variables the number of terms N in the simplified trapezoid rule depends on xk much
stronger than after the sinh-acceleration. When the latter is applied, given the error tolerance,
the parameters of the sinh-acceleration procedure bar the number of terms N can be chosen
the same for all x′. Furthermore, N decreases as x′ increases in the absolute value, there is no
need to assign x = x1 if a < F1 and x = xM if a > FM . Instead, we calculate x = F−1(a)
using the Newton method, and 2-3 iterations suffice to satisfy the error tolerance 10−12 and
less if the initial approximation (e.g., x1 or xM ) is not small in absolute value.

To apply the Newton method

(6.2) xn+1 = xn − (F (xn)−A)/F ′(xn),

one has to evaluate the pdf pn = F ′(xn) as well but the sinh-acceleration method allows one to
calculate both F (xn) and F

′(xn) using the same parameters of the numerical scheme; moreover,
only one step of calculations is different: in the case of F (xn), we have an additional factor
1/(−iξ). We can simultaneously calculate F ′′(xn) inserting the factor −iξ instead of 1/(−iξ);
this allows us to use the second order approximation

F (x) = F (xn) + (x− xn)F
′(xn) +

(x− xn)
2

2
F ′′(xn)

to solve F (x)−A = 0 on a sufficiently small interval [xn−1, xn]:

(6.3) x = xn −
2(F (xn)−A)

F ′(xn) +
√
F ′(xn)2 − 2(F (xn)−A)F ′′(xn)

.

In general, we can calculate F (xn), F
′(xn), F

′′(xn) for xn over a wide interval using the same
parameters of the scheme. This implies that the bulk of the CPU time is spent on calculations
of the parameters of the scheme, and the arrays ξk = iω1 + b sinh(iω + yk) and Expk :=
exp[−tψ(iω1 + b sinh(iω + yk))] cosh(iω + yk), k = 1, 2, . . . , N . The last step is the fast and
straightforward evaluation of the quantities

F (xn) =
ibζ

π

N∑
j=0

(1− δj0/2)Re
exp[−ix′nξj ]Expj

ξj
(6.4)

F ′(xn) =
bζ

π

N∑
j=0

(1− δj0/2)Re exp[−ix′nξj ]Expj(6.5)

F ′′(xn) =
ibζ

π

N∑
j=0

(1− δj0/2)Re exp[−ix′nξj ]ξjExpj .(6.6)

For the application of the Newton method for a < F1 and a > FM , at each step of the iteration
procedure, we can use the arrays ξ and Exp calculated for N = N(x1) and N = N(xM ),
respectively.
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The quadratic approximation (6.3) allows us to use much sparser grids than the linear
approximations (6.1) and (6.2), for xn not small in absolute value especially.

The next trick allows us to decrease the number of points smaller still. Instead of the
equation F (x) = A, we solve the equation f(x) = a, where f(x) = lnF (x) and a = lnA. Since
f is more regular than F , the same approximations work better, and f ′k = f ′(xk) = F ′

k/Fk,
f ′′k = (F ′′

k Fk − (F ′
k)

2)/Fk are easy to calculate.

Example 6.1. Consider KoBoL of order ν = 0.7 with c+ = c+ = 0.6, λ+ = 5, λ− = −10,
µ = 0; t = 0.001. The second instantaneous moment m2 = 0.093440429 (rounded) is not small,
and time step t = 0.001 is not exceedingly small. The order ν = 0.7 is not small as well; in the
empirical literature, one find numerous examples of ν close to 0. The steepness parameter λ+
is not too small as well (one can find examples of λ+ < 1). Nevertheless, as several examples
for quantiles demonstrate,

1. accurate Monte-Carlo simulations using FFT or HT will require grids with the size of the
mesh 10−5 or less;

2. if the truncation is made at the level F1 = 10−8, then x1 = −1.6707581397416 (the result
is found using the Newton method with the initial approximation −1; three iterations were
needed to satisfy the error tolerance 10−12.) Hence, FFT or HT method would require the
uniformly spaced grid of the length of the order of 160k, and the errors of truncation and
evaluation of Fk would be non-negligible;

3. with the exception of a very small neighborhood of 0, the quadratic approximation applied
to f requires much sparser grid than other approximations.

In Table 12 (see Appendix B.4), we list the errors of several approximations, for several values
of A and several widths h of the interval (xj−1, xj) containing f

−1(a) = F−1(A).

Labels for approximations used:

• L: linear interpolation (6.1);
• N: Newton approximation (6.2);
• LL: linear interpolation applied to f = lnF ;
• LN: Newton approximation applied to f = lnF ;
• QT: quadratic approximation (6.3) applied to f = lnF .

From Table 12, it is clearly seen that QT allows one to use much sparser grid x1 < x2 <
· · · < xM ; the grid must be non-uniformly spaced. At the points of the grid, f = lnF and its
first and second derivatives must be precalculated, which can be done very fast using the sinh-
acceleration. For evaluation of x = f−1(a) for a < f1 and a > fM , we use the Newton method
and two precalculated arrays of a small size which represent functions in the dual space. No
truncation is needed.

Outline of the algorithm.

I. In a neighborhood of x′ = 0, e.g., in the interval [F−1(0.3), F−1(0.7)], the steps hj =
hj+1−hj should be of the order 10−5 if t is small. For larger t, larger steps are admissible.
E.g., for t = 1, hj of the order of 0.001 can be admissible.

II. As |xj | increases, hj can be made larger. As the rule of thumb, for the left tail, we
would recommend hj = −0.01fj+1/f

′
j+1 for points below xlow := F−1(0.3); the points xj

below xlow are calculated in the same cycle as the values fj , f
′
j , f

′′
j . For the right tail, the

recommendations are by symmetry.
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III. The grid is truncated at F−1[0.001] or F−1[0.0001], and at F−1[0.999] or F−1[0.9999].
For all points of the grid, the values fj , f

′
j , f

′′
j should be calculated and stored.

IV. The parameters of the sinh-acceleration should be calculated for x0 = F−1[0.001] (or
F−1[0.0001]), and arrays ξ = ξ− and Exp− calculated and stored. (The sign minus
indicates that the arrays will be used for calculations in the left tail).

V. The parameters of the sinh-acceleration should be calculated for xM = F−1[0.999] (or
F−1[0.9999]), and arrays ξ = ξ+ and Exp+ calculated and stored. (The sign plus indicates
that the arrays will be used for calculations in the right tail).

VI. If a realization A ∼ U [0, 1] belongs to [F−1(0.001), 0] (resp., to [0, F−1(0.999)], then an
interval [xn−1, xn] s.t. fn−1 < lnA ≤ fn (resp., an interval [xn, xn+1] s.t. fn ≤ A < fn+1)
should be found, and the quadratic approximation (6.3) applied.

VII. If A < 0.001, the Newton method is applied with x0 as the initial approximation; the
stored values are used to calculate f(xn)/f

′(xn) at each step of the Newton method.
VIII. If A > 0.999, the Newton method is applied with x0 as the initial approximation; the

stored values are used to calculate f(xn)/f
′(xn) at each step of the Newton method.

6.2. Multi-factor KoBoL. In [10, Section 9.1], we defined a general class of Lévy processes
with exponentially decaying tails, and explicitly constructed several subclasses. In particular,
the characteristic exponent of a multi-dimensional KoBoL of order ν ∈ (0, 2), ν ̸= 1, (see [10,
Eq. (9.1)]) can be written in the form

(6.7) ψ(ξ) = −i⟨µ, ξ⟩+ cΓ(−ν)
∫
Sn−1

[λ(φ)ν − (λ(φ)− i⟨Σξ, φ⟩)ν ] Π′(dφ),

where ⟨·, ·⟩ is the standard inner product in bnr , Sn−1 is the unit sphere, c > 0, λ is a positive
continuous function on Sn−1, Σ is a positive-definite matrix, and Π′(dφ) is a measure on Sn−1

of unit mass, which can be regarded as a probability distribution on Sn−1.
For simplicity, let µ = 0. We suggest two natural methods of simulation of the multi-factor

KoBoL with the characteristic exponent (6.7).

mKoBoL MC 1. Approximate the measure by an atomic measure. For each atom, design
the simulation procedure of the corresponding 1-factor one-sided KoBoL. At each step of the
general simulation procedure, simulate a point on the sphere (with the weight Π′(φj)), and, for
φj run the simulation procedure for the corresponding one-dimensional KoBoL. To the current
spot value x, add the realization of the one-factor KoBoL in the direction of φ.

mKoBoL MC 2. A slower but more accurate method. At each time step, simulate the
distribution Π′, and, for each realization, apply the full-scale MC method for one-factor KoBoL.

Variations: work with two-sided one-dimensional KoBoL writing

ψ(ξ) = −i⟨µ, ξ⟩+ Γ(−ν)
∫
RPn−1

Π′(dφ)

×{c+ [(λ(φ))ν − (λ(φ)ν − i⟨Σξ, φ⟩)ν ] + c− [(λ(−φ))ν − (λ(−φ)ν + i⟨Σξ, φ⟩)ν ]} ,

c± > 0, where RPn−1 is the real projective space of dimension n−1 (informally, the unit sphere
with opposite points identified).
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7. Conclusion

In the paper, we developed a general methodology for fast and accurate evaluation of integrals
of the form

I =

∫
Im ξ=ω0

g(ξ)dξ,

that appear in many problems in probability, mathematical finance, and other areas of applied
mathematics, and formalized the properties of the integrands that can be calculated using
this scheme. The methodology is applicable if an integrand g(ξ) admits analytic continuation
to a union of a strip around the line of integration and a conus that contains the strip, and
decays sufficiently fast as ξ → ∞ remaining in the union. The analyticity of the integrand
in the strip and sufficiently fast decay at infinity allows one to exploit an important property
of the infinite trapezoid rule, namely, exponential decay of the discretization error as function
of 1/ζ, where ζ > 0 is the mesh size. This property is well-known and widely used in the
literature. In probability, the characteristic functions of various probability distributions related
to diffusion processes and jump-diffusion processes with exponentially decaying densities of
jumps are analytic in a strip around the real axis. Unfortunately, in many cases of interest
such as the CIR model, VG model and KoBoL, the characteristic function decays slowly as
ξ → ∞, and millions of terms in the simplified trapezoid rule may be needed to satisfy even a
moderate error tolerance.

However, if g(ξ) admits analytic continuation to a conus and decays polynomially or ex-
ponentially as ξ → ∞ remaining in the conus, then a change of the variable of the form
ξ = iω1 + b sinh(iω + y) in the integral is justified. After the change, the new integrand is an-
alytic in a strip around the real axis and decays exponentially if the initial integrand decayed
polynomially and as exp[−c exp |y|], where c > 0, if the initial integral decayed exponentially.
In the result, in many cases, N < 10 suffice to satisfy the error tolerance ϵ = 10−7; typically,
less than 50 terms suffice, and in essentially all cases of interest, N of the order of 100-150
suffices to satisfy the error tolerance 10−12.

We formalized the properties of the characteristic functions of processes and distributions
that allow one to apply the sinh-acceleration, and illustrated the general scheme of the sinh-
acceleration with several typical examples: pdf of Lévy processes; pricing of European options
in Lévy models, Heston model, CIR model, and a subordinated Lévy model. The scheme admits
straightforward modification to affine stochastic volatility models and interest rate models (it
suffices to replace in [30] the fractional-parabolic change of variables ξ = iω1± iσ(1∓ iη)α with
the sinh-acceleration, and take into account that the maximal conus of analyticity is, in the
general case, narrower than in the case of the Heston model and CIR model); jumps can be
included as in [30]. Note that if the fractional-parabolic change of variables is used, then the
rate of decay of the integrand increases but the resulting number of terms remains too large in
a number of important cases such as the evaluation of the probability distribution function at
the peak (see [7, 30]), and pricing options in the interest models of the CIR-type.

An additional advantage of the sinh-acceleration as compared to the fractional-parabolic
change of variables is that the width of the initial strip of analyticity is almost irrelevant in
the former case as explained in Remark 2.3 whereas in the latter case, a narrow strip implies a
very large number of terms, and makes it necessary to move the line of integration to a wider
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strip [7, 28, 30]. However, the angle between the rays that define the conus of analyticity is
important.

The general scheme of the sinh-acceleration consists of the following steps

I. Find γ− ≤ 0 < γ+ or γ− < 0 ≤ γ+ such that the integrand g(ξ) is analytic in the cone

Cγ−,γ+ , and, for any φ ∈ (γ−, γ+), decays along the rays eiφ · R+ and ei(π−φ) · R+.

II. Set ω = (γ+ + γ−)/2, d0 = (γ+ − γ−)/2.
III. Find a strip S(−µ−,µ+) of analyticity of the integrand around the initial line Im ξ = ω0 of

integration.
IV. Set a− = sin(min{π/2,−γ−}), a+ = sin(min{π/2, γ+}), and

ω1 =
µ+a− + µ−a+
a+ + a−

, b0 =
µ+ − µ−
a+ + a−

.

V. Choose kb = 0.8− 0.95, kd = 0.8− 0.95 and set b = kbb0, d = kdd0.
VI. Derive an upper bound for the Hardy norm H of f(y) = g(iω1+b sinh(iω+y))b cos(iω+y)

as an analytic function on S(−d,d). Typically, a simple approximation H = 10(|f(id)| +
|f(−id)|) works well.

VII. Given the error tolerance ϵ, choose the mesh size as ζ = 2πd/ ln(H/ϵ).

VIII. Derive an approximate bound for g(eiωρ) and g(ei(π−ω)ρ) for ρ in a neighborhood of +∞.
IX. Given the error tolerance ϵ, use the bound to find Λ1 such that∫ +∞

Λ1

|g(eiωρ)|dρ+
∫ +∞

Λ1

|g(ei(π−ω)ρ)|dρ < ϵ.

X. Set Λ = ln(2Λ1/b), N = ceil(Λ/ζ).
XI. Apply the simplified trapezoid rule

(7.1)

∫
Im ξ=ω0

g(ξ)dξ ≈ bζ
∑
|j|≤N

g(iω1 + b sinh(iω + jζ)) cos(iω + jζ).

XII. If g(ξ) = g(−ξ), ∀ ξ, use the following faster version of (7.1)

(7.2)

∫
Im ξ=ω0

g(ξ)dξ ≈ 2bζ
∑

0≤j≤N
(1− δj0/2)Re (g(iω1 + b sinh(iω + jζ)) cos(iω + jζ)) ,

where δjk is Kronecker’s delta.

Note that, in addition to the theoretical bounds for the error of the sinh-acceleration, one can
easily check the accuracy of the result choosing less optimal pair (γ−, γ+) so that the new ω
is different from the old one and larger and finer grid than recommended, and recalculate the
integral. The probability of a random agreement between the two results is negligible, hence,
the absolute value of the difference is a good proxy for the error.

The sinh-acceleration change of variables can be applied to pricing European options in qua-
dratic term structure models, models with Wishart dynamics (in both cases, the integrands
decay very slowly, as in the CIR model, hence, accurate calculations using the popular FFT
techniques are essentially impossible as demonstrated in [30] for affine models of An(n) class),
3/2 models and, essentially, any model where the (conditional) characteristic function can be
calculated, e.g., Barndorff-Nielsen and Shephard model, and subordinated models more general
than the model considered in the paper. The methodology can be also applied to evaluation
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of special functions [29], calculation of distributions of the infimum and supremum of Lévy
processes, processes of Ornstein-Uhlenbeck type, and a number of other popular processes,
calculation of the Wiener-Hopf factors, pricing of path-dependent options, Monte-Carlo simu-
lations (in many cases, the CPU time decreases by a factor of 10-100 and more), in multi-factor
models including. The efficiency of the calibration procedure of the Heston model in [20, 21]
can also be improved. To apply the sinh-acceleration to regime-switching models, it suffices
to use matrix operations instead of the scalar ones (and, naturally, study the region where the
matrix functions and their reciprocals are analytic; formally, the scheme remains the same).
Applications to stochastic covariance models are similar to applications to stochastic volatility
models.
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Ann.Appl.Prob., 20(5):1801–1830, 2010.
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Appendix A. Auxiliary results

A.1. Complexity of the flat iFT scheme and the scheme based on the fractional-
parabolic deformation of order α. We consider KoBoL and NTS of order ν ∈ (0, 2). In
both cases, ψ0 admits analytic continuation to the complex plane with the cuts i(−∞, µ−],
i[µ+,+∞), where µ− = λ−, µ+ = λ+ in the case of KoBoL, and µ− = −α− β, µ+ = α− β in
the case of NTS. In the latter case, we represent ψ0 in the form

ψ0(ξ) = δ[(µ+ + iξ)ν/2(−µ− − iξ)ν/2 + µ+µ−].

If x′ ≤ 0, we use the change of variables ξ = iµ+− iσ(1+ iη)α (note that this α has no relation
to the α in the definition of NTS processes), where σ = (µ+−µ−)/2

α, and the representations

(µ+ + iξ)ν/2 = σν/2 exp
[αν
2

ln(1 + iη)
]

(A.1)

(−µ− − iξ)ν/2 = exp
[ν
2
ln[µ+ − µ− − σ exp[α ln(1 + iη)]]

]
.(A.2)

The RHS of (A.1) is analytic in the strip S(−1,1), and the same holds for the RHS of (A.2) if
α ≤ 4. If α > 4, we need to define analytic continuation of ln[µ+ −µ− − σ exp[α ln(1+ iη)]] on
the RHS of (A.2) adding iπ (resp., −iπ) as η 7→ µ+ − µ− − σ exp[α ln(1 + iη)] crosses (−∞, 0)
from above (resp., from below). Then, in the η-coordinate, the half-width of the maximal strip
of analyticity is d0 = 1. We take d ∈ (0, 1), and define the mesh ζ = 2πd/ ln(H(f, d)/ϵ), where
f is the integrand in the η-coordinate.

To find an approximation to the truncation parameter Λ, we note that

ψ0(ξ(η)) ∼ c∞(0)ei(α−1)νπ/2σν |η|αν ,

as η → ∞ remaining in the strip S(−d,d), therefore, given ϵ > 0, we can find Λ1 satisfying

(A.3)
etC0

π

∫ +∞

Λ1

e−x
′ cos(απ/2)ρ−c∞ρνdρ = ϵ,

where c∞ := c∞(tc∞(0), α, ν) = tc∞(0) cos((α− 1)νπ/2) (we use (2.22) with ω = (α− 1)π/2),

and then calculate Λ = (Λ1/σ)
1/α and N = ceil(Λ/ζ).

If x′ = 0 or ν ≥ 1, the necessary and sufficient condition on α(≥ 1) is πν(α − 1)/2 < π/2,
equivalently, α < 1 + 1/ν. If x′ < 0 and ν < 1, then the necessary and sufficient condition
on α is πα/2 < 3π/2, equivalently, α < 3. However, if x′ is small in absolute value, then it is
advisable to ensure that not only Re(−ix′ξ(η)) increases but Reψ0(ξ(η)) does not tend to −∞
as well. Hence, if 1 + 1/ν ≤ 3, we take α < 1 + 1/ν.

An approximate solution to (A.3) is found differently in cases

(i) x′ = 0 and ν ∈ [1, 2];
(ii) x′ = 0 and ν ∈ (0, 1);
(iii) x′ < 0 and ν ∈ (1, 2];
(iv) x′ < 0 and ν ∈ (0, 1);
(v) x′ < 0 and ν = 1.

Case (i). We change the variable c∞ρν = y, ρ = (y/c∞)1/ν

(A.4)
etC0

νπ(c∞)1/ν

∫ +∞

c∞Λν
1

e−yy1/ν−1dy = ϵ.
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Since 1/ν ≤ 1, we can use the following approximation:

Λ2 = ln(1/ϵ) + tC0 − ln(νπ(c∞)1/ν), Λ1 = (Λ2/c
∞)1/ν ,

whose accuracy can be improved reassigning

Λ2 := ln(Λ
1/ν−1
2 /ϵ) + tC0 − ln(νπ(c∞)1/ν), Λ1 = (Λ2/c

∞)1/ν .

The complexity of the scheme is of the order of AE1+1/(αν), where

A = 1/(2πd(c∞)1/(αν)σ1/α) → +∞, as α ↑ 1 + 1/ν.

Case (ii). We integrate by parts in (A.3) and obtain an approximate equation

etC0

π
e−c

∞Λν
1Λ1 = ϵ,

equivalently,

(A.5) c∞Λν1 − lnΛ1 − tC0 − ln(1/(πϵ) = 0.

We obtain an approximate solution of (A.5) in two steps: Λ1 = (ln(1/(πϵ))/c∞)1/ν , then
reassign

Λ1 := ((ln(1/(πϵ)) + lnΛ1 + tC0)/c
∞)1/ν .

The complexity of the scheme is given by the same formula as in Case (i), with a different A.
Note that the complexity increases as ν ↓ 0 and α fixed. However, we can choose α < 1 + 1/ν
arbitrary close to 1 + 1/ν. Hence, in both cases, the complexity of the scheme is of the order

of A(c)E(ν+2)/(ν+1)−c, where c > 0 can be made arbitrarily small choosing the parameters of
the model appropriately; however, A(c) → +∞ as c ↓ 0.

Case (iii). One can use the same prescriptions as in the case (i); the truncation parameter can
be made smaller taking into account that Re(iξ) increases fast (but slower than Reψ0(ξ)).

(iv) We take α ≤ 1 + 1/ν, α < 3, and define Λ1 in two steps:

Λ1 = (ln(1/(πϵ))/(−x′ cos(απ))), Λ1 := ((ln(1/(πϵ)) + tC0 + c∞(α, ν)Λν1)/(−x′ cos(απ))).

The complexity of the scheme is of the order of AE1+1/α.

(v) We take α = 2, find Λ1 from (A.3), and set Λ = (Λ1/σ)
1/2. The complexity of the scheme

is of the order of AE3/2.

A.2. A modification of the general scheme for pricing European options in the
Heston model. We fix a moderately large λ (e.g., λ = 10) so that we do not expect that λ0+
and −λ0− which will appear in the process of calibration turn out to be much larger than λ; in
all cases, we will use µ+ = min{λ0+, λ}, µ− = max{λ0−,−λ}. For a fine and sufficiently long
grid δ = δj = δ0j, δ0 > 0, j = 1, 2, . . . , Nδ, we precalculate the array

(A.6) V (δj , λ) = −
∫
R

e−δ((λ
2+ξ2)1/2−λ)

ξ(ξ + i)
dξ.

In the process of calibration, for a set of parameters of the Heston model, we calculate Φ(ξ) :=
iξzt + (vtB0(τ, ξ) + C0(τ, ξ))/σ

2
0 at ξ = 0 and ξ = −i. Set a0 = Φ(0), a1 = Φ(−i), and find δ

from the condition a1 − a0 = −δ((λ2 − 1)1/2 − λ). Using interpolation, we calculate V (δ, λ)
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with the desired precision, define Φ1(ξ) = a0 − δ((λ2 − 1)1/2 − λ), and, in (3.11), replace eΦ(ξ)

with eΦ(ξ) − eΦ1(ξ):

(A.7) Vcall,aux(t, St, vt) = −Ke
−rτ

2π

∫
Im ξ=ω

eΦ(ξ) − eΦ1(ξ)

ξ(ξ + i)
dξ.

The integrand in (A.7) has no poles (whereas the integrand in (3.11) has two simple poles at
0 and −i), and we can evaluate the integral using µ+ = min{λ0+, λ}, µ− = max{λ0−,−λ}. The
truncation parameter is chosen as the maximal of the truncation parameters defined by the
procedure above for Φ(ξ) and Φ1(ξ). After Vcall,aux(t, St, vt) is calculated, we find

Vcall(t, St, vt) = Vcall,aux(t, St, vt)−
Ke−rτ

2π
V (δ, λ).

A.3. Characteristic function in the CIR model. Function W (t, T ; r, ξ) is the unique
bounded solution of the backward Kolmogorov equation

(A.8) (∂t + κ(θ − r)∂r +
σ2

2
r∂2r − r)W (t, T ; r, ξ) = 0,

subject to W (T, T ; r, ξ) = eirξ. Substituting (4.2) into (A.8), we obtain

−rBτ − Cτ + κ(θ − r)B +
σ2

2
rB2 − r = 0.

The system of Riccati equations for (B,C) is

Bτ =
σ2

2
B2 − κB − 1,(A.9)

Cτ = κθB,(A.10)

the initial condition being B(0, ξ) = iξ, C(0, ξ) = 0. Let B± = (κ ±
√
κ2 + 2σ2)/σ2 be the

roots of the quadratic equation σ2

2 B
2 − κB − 1 = 0. We rewrite (A.9) in the form[

1

B −B+
− 1

B −B−

]
dB =

√
κ2 + 2σ2dτ,

and integrate
B −B+

B −B−
= Λ(ξ)eτ

√
κ2+2σ2

,

where Λ(ξ) = iξ−B+

iξ−B−
. Thus,

B(τ, ξ) =
B+ −B−Λ(ξ)e

τ
√
κ2+2σ2

1− Λ(ξ)eτ
√
κ2+2σ2

(A.11)

=
B+(iξ −B−)−B−(iξ −B+)e

τ
√
κ2+2σ2

iξ −B− − (iξ −B+)eτ
√
κ2+2σ2

=
B+(iξ −B−)e

−τ
√
κ2+2σ2 −B−(iξ −B+)

(iξ −B−)e−τ
√
κ2+2σ2 − (iξ −B+)

=
iξ(B+e

−τ
√
κ2+2σ2 −B−)−B+(−B−)(1− e−τ

√
κ2+2σ2

)

B+ −B−e−τ
√
κ2+2σ2 − iξ(1− e−τ

√
κ2+2σ2)

,
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and we obtain (4.3). Using (A.11), we write

C(τ, ξ) = κθ

∫ τ

0

B+ −B−Λ(ξ)e
τ ′
√
κ2+2σ2

1− Λ(ξ)eτ ′
√
κ2+2σ2

dτ ′,

and change the variable Λ(ξ)eτ
′√κ2+2σ2

= y, dτ ′ = dy/(y
√
κ2 + 2σ2):

C(τ, ξ) =
κθ√

κ2 + 2σ2

∫ Λ(ξ)eτ
√

κ2+2σ2

Λ(ξ)

B+ −B−y

y(1− y)
dy

=
κθ√

κ2 + 2σ2

∫ Λ(ξ)eτ
√

κ2+2σ2

Λ(ξ)

[
B+

y
− B+ −B−

y − 1

]
dy

=
κθ√

κ2 + 2σ2

[
B+ ln

Λ(ξ)eτ
√
κ2+2σ2

Λ(ξ)
− (B+ −B−) ln

Λ(ξ)eτ
√
κ2+2σ2 − 1

Λ(ξ)− 1

]

=
κθ√

κ2 + 2σ2

[
B+τ

√
κ2 + 2σ2 − 2

√
κ2 + 2σ2

σ2
ln

Λ(ξ)eτ
√
κ2+2σ2 − 1

Λ(ξ)− 1

]

= κθ

[
B+τ + 2σ−2 ln

B+ −B−

(Λ(ξ)eτ
√
κ2+2σ2 − 1)(B− − iξ)

]

= κθ

[
B−τ + 2σ−2 ln

B+ −B−

(Λ(ξ)− e−τ
√
κ2+2σ2)(B− − iξ)

]

= κθ

[
B−τ + 2σ−2 ln

B+ −B−

B+ − iξ − e−τ
√
κ2+2σ2(B− − iξ))

]
,

which gives (4.4).

Appendix B. Numerical examples

The calculations in the paper were performed in MATLAB c⃝ 8.0.0 (R2012b), on a PC with
characteristics Intel (R) Core (TM) i7 CPUM 640, 2.80GHz, 8MB, under the Genuine Windows
7 Professional operating system.

B.1. Tables I. Pdf of NTS. The parameters of the process are µ = 0, α = 10, β = 0 for
t = 0.004; δ = m2λ

ν−2, where m2 = ψ′′(0) = 0.1 is the second instantaneous moment. In Table
1, ν varies, and the pdf is calculated at the peak. In Table 2, ν = 0.3 is fixed, and x varies.

The benchmark prices are obtained using the sinh-acceleration with different γ+, γ−, ζ and
N ; the results differ by less than E-15. For each ν, x′ = x− µt and the method of integration,
the mesh size ζ and Λ are chosen using the universal prescriptions for the error tolerance ϵ.
In some cases, latter are either inaccurate or lead to the overkill; then we show the results
obtained with ζ/kζ and kΛΛ instead of the prescribed ζ and Λ. Typically, approximate bounds
for the Hardy norm are inaccurate for ν < 1 (ζ must be about 30% smaller) and lead to an
overkill for ν > 1 (ζ can be about 5-10% larger). In some cases, Λ can be 5-10% smaller as
well. The CPU time is in microseconds; the average is over 1 mln runs.
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Table 1. Pdf of Xt at the peak at 0, rounded, and truncation errors of the calculation
using sinh-acceleration and flat inverse Fourier transform. Dependence on the order ν.

ν 0.1 0.3 0.5 0.9 1.1 1.5 1.9
pt(0) 1.64335E+11 27813.7583 1077.36380 111.103247 64.5381220 32.7368302 21.6193636
SINH

ϵ = 10−15 kζ = 1 kΛ = 1
N 30 30 33 32 33 34 35

Error 0 0 0 0 0 0 0
Time 12.2 12.2 12.7 12.5 12.7 12.9 13.0

ϵ = 10−15 kζ = 1 kΛ = 0.95
N 29 29 31 31 31 32 33

Error 0 0 0 0 0 -1.2E-12 -9.9E-14
Time 12.0 12.0 12.4 12.4 12.3 12.5 12.7

ϵ = 10−7 kζ = 1 kΛ = 1
N 18 15 16 15 15 16 16

Error -2.46E+04 -0.00019 -7.3E-06 2.6E-08 1.6E-08 1.3E-10 2.0E-11
Time 10.0 9.5 9.4 9.8 10.0 10.1 10.4

ϵ = 10−7 kζ = 1.1 kΛ = 1
N 19 17 17 17 17 18 18

Error 1.743E+03 2.7E-06 5.9E-07 2.3E-07 -9.6E-08 5.3E-09 -6.6E-09
Time 10.1 9.8 9.6 9.7 9.6 9.9 10.1

ϵ = 10−4 kζ = 1 kΛ = 1
N 13 10 10 9 9 10 10

Error -5.1E+06 1.48 0.020 0.0013 0.0013 -0.00032 -8.3549E-05
Re.Err. -3.1E-05 5.3E-05 1.9E-05 1.2E-05 2.0E-05 -9.8E-06 -3.9E-06
Time 9.0 8.5 8.3 8.3 8.5 8.4 8.4
Fract. Parabolic

ϵ = 10−15 kζ = 1 kΛ = 1
N 17851 10866 10244 1250 729 345 201

Error -146.4 4.3E-09 -1.0E-11 0 0 0 0
Time 5066 2996 2759 617 365 186 109

ϵ = 10−7 kζ = 1 kΛ = 1
N 6512 3361 2921 460 268 130 78

Error -113 8.0E-08 5.7E-10 -9.0E-11 -2.3E-10 -3.5E-10 -9.6E-11
Time 2010 1003 877 232 142 72.1 46.2

ϵ = 10−4 kζ = 1 kΛ = 1
N 3334 1558 1279 238 138 68 41

Error -245 -0.0003 2.9E-05 1.3E-07 1.4E-06 1.7E-07 -6.0E-07
Time 1040 826 633 124 73.4 42.3 28.1
Errors of flat IFT; ζ is fixed
N = 105 -1.64E+11 -10795 -1.5E-04 1.1E-07 7.7E-08 3.1E-08 4.1E-09
N = 106 -1.64E+11 -1175 2.1E-07 1.1E-07 7.7E-08 3.1E-08 4.1E-09
N = 107 -1.64E+11 4.6 2.1E-07 1.1E-07 7.7E-08 3.1E-08 4.1E-09
N = 2 · 107 -1.64E+11 0.28 2.1E-07 1.1E-07 7.7E-08 3.1E-08 4.1E-09

X: completely symmetric NTS Lévy process with λ = 10, m2 = ψ′′(0) = 0.1, δ = m2λ
ν−2, t = 0.004, ν varies. Study of the

efficiency of the universal recommendations for the parameter choice for the sinh-acceleration and fractional-parabolic

transformation. For flat iFT, study of the dependence of the truncation error on ν and the number of terms N . Time: CPU

time in microseconds.

B.2. Tables II. The Heston model. Table 3: T = 0.004, comparison of the sinh-acceleration
with the fractional-parabolic method, for one strike.

Table 4: T = 0.004, calculation using the same set of parameters of SINH for all strikes.
The errors and times for calculation of prices for different numbers of strikes.

Tables 5-8: the same as Table 4, for T = 0.1, 1.0, 5, 15.
Table 9: the comparison of the performance of the sinh-acceleration method with the Lewis-

Lipton and Carr-Madan realizations of the flat iFT method. In all cases, the standard pre-
scriptions (ζ = 0.125, N = 4096) imply negligible truncation errors, hence, the errors shown
are, essentially, the discretization errors.
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Table 2. Left tail of pdf ofXt, rounded, and truncation errors of the calculation using
the sinh-acceleration and flat inverse Fourier transform. Dependence on the distance
from the peak.

x -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 -0.02 -0.01
pt(x) 0.0029428 0.0059872 0.01277601 0.0294055 0.0777612 0.2894651 1.160531 2.93835839
SINH

ϵ = 10−15 kζ = 1 kΛ = 1
N 19 20 22 24 26 31 37 42

Error 7.0E-17 6.9E-17 -3.0E-16 -1.0E-16 -4.0E-16 -1.0E-15 0 0
Time 16.5 15.5 16.2 16.9 17.6 19.3 21.5 23.3

ϵ = 10−7 kζ = 1 kΛ = 1
N 8 8 9 10 11 14 17 19

Error 1.5E-08 -1.2E-08 9.1E-09 2.1E-08 -6.1E-09 -4.2E-08 -4.6E-08 1.1E-07
Time 11.2 11.0 11.3 11.8 12.2 13.3 14.3 14.9

ϵ = 10−4 kζ = 1 kΛ = 1
N 4 4 5 5 6 8 10 12

Error -1.4E-05 2.9E-05 -2.6E-05 3.1E-05 -1.9E-05 5.8E-05 1.1E-04 -1.6E-04
Time 9.5 9.3 9.7 9.8 10.2 11.0 11.7 12.3
Fract. Parabolic

ϵ = 10−15 kζ = 1 kΛ = 0.8
N 38 41 44 48 55 70 96 122

Error 5.0E-17 4.0E-17 -1.0E-16 0 1.9E-16 1.0E-15 0 0
Time 32.5 33.6 35.5 38.1 42.1 51.1 67.1 84.2

ϵ = 10−7 kζ = 1 kΛ = 0.8
N 14 15 16 17 20 25 35 44

Error 1.0E-10 5.7E-11 5.8E-11 -1.4E-11 8.9E-12 -4.6E-11 9.0E-09 3.2E-07
Time 17.6 18.1 18.8 19.2 21.2 24.0 30.0 35.7

ϵ = 10−4 kζ = 1 kΛ = 0.8
N 9 10 10 11 13 16 22 28

Error 5.5E-06 1.9E-06 9.0E-07 -5.0E-07 -9.4E-07 3.6E-07 -1.3E-07 6.5E-07
Time 14.2 14.9 15.0 15.6 16.7 18.5 22.4 26.2

ϵ = 10−4 kζ = 0.95 kΛ = 0.8
N 9 9 10 11 12 15 21 27

Error 1.7E-05 6.5E-06 1.2E-06 1.6E-06 2.4E-06 -3.5E-06 -8.5E-07 -3.5E-07
Time 14.5 14.3 15.1 15.6 16.2 18.1 21.9 26.9
Errors of flat IFT; ζ is fixed
N = 105 0.0057 -0.0056 0.0056 -0.0055 0.0054 -0.0054 -0.48 1.53
N = 106 0.0018 0.00040 -0.0018 -0.0045 -0.0070 -0.0088 -0.0094 -0.0094
N = 107 -1.3E-06 4.6E-06 7.1E-06 1.2E-06 -1.2E-05 -2.6E-05 -1.4E-05 -0.00015

X: completely symmetric NTS Lévy process of finite variation, with λ = 10, m2 = ψ′′(0) = 0.1, ν = 0.3, δ = m2λ
ν−2,

t = 0.004, x varies. Study of the efficiency of the universal recommendations for the parameter choice for the sinh-acceleration

and fractional-parabolic transformation. For flat iFT, study of the dependence of the truncation error on ν and the number of

terms N . Time: CPU time in microseconds.

B.3. Call option on the bond in CIR model (Table 10) and in CIR-subordinated
NTS model (Table 11).

B.4. Examples of calculation of quantiles (Table 12).
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Table 3. Put in the Heston model. SINH acceleration vs Fractional Parabolic.

K 85 90 95 100 105 110 115
x′ 0.205437159 0.1482787452 0.0942115239 0.0429182295 -0.0058719347 -0.0523919503 -0.0968437129
Vput 8.75606E-07 0.0004112657 0.046751956 1.0603962422 5.0125262734 9.991210204 14.9908003682

SINH

ϵ = 10−12 kζ = 1.8 kΛ = 1.35
ζ 0.135219069 0.141969971 0.149051905 0.156224513 0.161505024 0.154669039 0.148348105
N 58 56 54 52 50 53 55

Error -2.98E-12 3.95E-12 0 -4.00E-14 3.91E-14 0 9.95E-14
Time 0.207 0.203 0.199 0.195 0.184 0.193 0.188

ϵ = 10−6 kζ = 1.8 kΛ = 1.35
ζ 0.239504852 0.251634664 0.264309759 0.277086239 0.286405666 0.274054828 0.262614271
N 31 30 29 28 27 28 30

Error -1.41E-07 -1.35E-07 -1.01E-07 -6.55E-10 5.52E-09 -6.43E-08 1.45E-07
Time 0.190 0.181 0.179 0.173 0.179 0.182 0.175

ϵ = 10−2 kζ = 1.8 kΛ = 1.35
ζ 0.450079392 0.473594213 0.497964069 0.522276556 0.539648211 0.515421352 0.492902392
N 14 14 13 13 13 13 14

Error -2.16E-04 -6.09E-04 -1.63E-04 9.62E-06 -1.30E-04 -8.23E-04 -2.49E-03
Time 0.182 0.181 0.165 0.162 0.167 0.169 0.168

Fract. Para

ϵ = 10−12 kζ = 1 kΛ = 1
ζ 0.1501040751 0.1498588017 0.149627309 0.1494081636 0.158551587 0.1583831405 0.1582217381
N 290 341 420 563 759 498 393

Error -1.28E-13 2.80E-14 -2.80E-14 -1.01E-14 -7.02E-14 -2.90E-13 -2.01E-13
Time 0.459 0.413 0.480 0.601 0.792 0.544 0.460

ϵ = 10−6 kζ = 0.85 kΛ = 0.85
ζ 0.3006157713 0.299780534 0.2989939791 0.2982509424 0.3306004853 0.3299784849 0.3293834519
N 92 109 135 182 237 154 121

Error -4.70E-07 -1.07E-06 3.05E-07 -1.91E-07 -1.53E-06 -1.55E-06 -1.5E-06
Time 0.349 0.224 0.241 0.280 0.352 0.261 0.240

ϵ = 10−2 kζ = 0.85 kΛ = 0.85
ζ 0.565 0.562 0.560 0.557 0.682 0.679 0.676
N 35 42 53 72 86 55 43

Error 1.2E-04 -4.3E-05 1.2E-04 -0.0057 2.0E-04 2.8E-05 -1.3E-04
Time 0.241 0.272 0.317 0.391 0.428 0.341 0.271

Put option parameters: r = 0.02, δ = 0, T = 0.004, S = 100.

Parameters of the Heston model: v0 = 0.18; ρ = −0.58, σ0 = 2.44, κ = 0.30,m = 0.18.

Time: CPU time in microseconds.

Given the error tolerance ϵ, the parameters of the schemes are chosen for each point, using the universal prescriptions with

the corrections factors kb = 0.8, kd = 0.8, kζ , kΛ.

Table 4. Put in the Heston model, T = 0.004. Prices and errors of the SINH-acceleration.

K 85 90 95 100 105 110 115
x′ 0.205437159 0.1482787452 0.0942115239 0.0429182295 -0.0058719347 -0.0523919503 -0.0968437129
Vput 8.75606E-07 0.0004112657 0.046751956 1.0603962422 5.0125262734 9.991210204 14.9908003682

ϵ = 10−12 4.26E-14 5.68E-14 -1.42E-14 -1.74E-12 6.01E-12 2.08E-11 2.26E-10

ϵ = 10−6 8.65E-10 7.82E-09 1.91E-08 -1.68E-07 4.23E-07 -6.85E-07 3.52E-06

ϵ = 10−2 -4.75E-03 1.06E-02 -2.25E-02 4.14E-02 -5.33E-02 6.09E-02 -6.89E-02

Put option parameters: r = 0.02, δ = 0, T = 0.004, S = 100.

Parameters of the Heston model: v0 = 0.18; ρ = −0.58, σ0 = 2.44, κ = 0.30,m = 0.18.

Given the error tolerance, the parameters are chosen the same for strikes in the range [85, 115], using the universal prescriptions
with the corrections factors kb = 0.8, kd = 0.8, kζ = 1.85, kΛ = 1.3.

For ϵ = 10−12: N = 89, ζ = 0.081939329, CPU time for 7 and 120 strikes: 0.323 and 2.79 msec., respectively.

For ϵ = 10−6: N = 57, ζ = 0.118334081, CPU time for 7 and 120 strikes: 0.258 and 1.68 msec., respectively.

For ϵ = 10−2: N = 30, ζ = 0.181940202, CPU time for 7 and 120 strikes: 0.221 and 1.40 msec., respectively.
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Table 5. Put in the Heston model, T = 0.1. Prices and errors of the SINH-
acceleration with the universal choice of the parameters.

K 85 90 95 100 105 110 115
x′ 0.2085894213 0.1514310075 0.0973637862 0.0460704918 -0.0027196724 -0.049239688 -0.0936914506
Vput 1.1764633175 1.8719759966 2.9150895284 4.5125209091 7.067104472 10.7962013124 15.2373482324

ϵ = 10−12 0 4.00E-14 -3.02E-14 -7.02E-14 0 9.95E-14 -3.00E-13

ϵ = 10−6 -1.44E-10 -3.26E-10 2.84E-09 1.31E-09 -5.60E-08 2.08E-07 -5.02E-07
ϵ = 10−2 -1.17E-08 -8.05E-08 2.96E-07 1.06E-06 -1.18E-06 -7.91E-06 -1.70E-05

Put option parameters: r = 0.02, δ = 0, T = 0.1, S = 100.

Parameters of the Heston model: v0 = 0.18; ρ = −0.58, σ0 = 2.44, κ = 0.30,m = 0.18.

Given the error tolerance, the parameters are chosen the same for strikes in the range [85, 115], using the universal prescriptions
with the correction factors kb = 0.8, kd = 0.8, kζ = 1.85, kΛ = 1.3.

For ϵ = 10−12: N = 94, ζ = 0.080430727, CPU time for 7 and 120 strikes: 0.321 and 2.59 msec., respectively.

For ϵ = 10−6: N = 48, ζ = 0.13343117, CPU time for 7 and 120 strikes: 0.261 and 1.85 msec., respectively.

For ϵ = 10−2: N = 30, ζ = 0.181940202, CPU time for 7 and 120 strikes: 0.222 and 1.37 msec., respectively.

Table 6. Put in the Heston model, T = 1. Prices and errors of the SINH-acceleration
with the universal choice of the parameters.

K 85 90 95 100 105 110 115
x′ 0.2381418803 0.1809834665 0.1269162452 0.0756229508 0.0268327867 -0.019687229 -0.0641389916
Vput 4.7941827931 5.6161173264 6.646714606 8.0122168751 9.9462613433 12.730505446 16.3323981366

ϵ = 10−12 -1.96E-14 1.95E-14 9.95E-14 0 -6.04E-14 9.95E-14 1.00E-12

ϵ = 10−6 8.24E-10 1.41E-09 -1.36E-08 -5.52E-08 -5.51E-08 2.74E-07 1.06E-06

ϵ = 10−2 -1.31E-04 -1.11E-04 8.73E-04 -2.28E-03 3.50E-03 -2.14E-03 -3.56E-03

Put option parameters: r = 0.02, δ = 0, T = 1, S = 100.

Parameters of the Heston model: v0 = 0.18; ρ = −0.58, σ0 = 2.44, κ = 0.30,m = 0.18.

Given the error tolerance, the parameters are chosen the same for strikes in the range [85, 115], using the universal prescriptions
with the correction factors kb = 0.8, kd = 0.8, kζ = 1.85, kΛ = 1.3.

For ϵ = 10−12: N = 85, ζ = 0.085671285, CPU time for 7 and 120 strikes: 0.309 and 2.43 msec., respectively.

For ϵ = 10−6: N = 49, ζ = 0.130631744, CPU time for 7 and 120 strikes: 0.252 and 1.75 msec., respectively.

For ϵ = 10−2: N = 26, ζ = 0.200931104, CPU time for 7 and 120 strikes: 0.222 and 1.33 msec., respectively.

Table 7. Put in the Heston model, T = 5. Prices and errors of the SINH-acceleration
with the universal choice of the parameters.

K 90 100 110 120 130 140 150
x′ 0.3123277288 0.2069672131 0.1116570333 0.0246456563 -0.0553970514 -0.1295050235 -0.198497895
Vput 8.9118170191 11.3017608315 14.4866039624 18.9062479333 24.8561314222 32.0308080039 39.9171298805

ϵ = 10−12 -6.04E-14 2.01E-13 -3.00E-13 -7.00E-13 -1.50E-12 -4.00E-12 2.20E-12

ϵ = 10−6 -2.70E-07 1.83E-09 4.67E-07 8.44E-07 2.73E-07 -2.09E-06 -2.78411E-06

ϵ = 10−2 5.00E-03 -8.27E-04 -9.73E-03 1.64E-02 -2.89E-03 -1.82E-02 7.70E-03

Put option parameters: r = 0.02, δ = 0, T = 5, S = 100.

Parameters of the Heston model: v0 = 0.18; ρ = −0.58, σ0 = 2.44, κ = 0.30,m = 0.18.

Given the error tolerance, the parameters are chosen the same for strikes in the range [90, 120], using the universal prescriptions
with the correction factors kb = 0.8, kd = 0.8, kζ = 1.85, kΛ = 1.3.

For ϵ = 10−12: N = 75, ζ = 0.087187403, CPU time for 7 and 120 strikes: 0.297 and 2.16 msec., respectively.

For ϵ = 10−6: N = 43, ζ = 0.13264446, CPU time for 7 and 120 strikes: 0.246 and 1.71 msec., respectively.

For ϵ = 10−2: N = 22, ζ = 0.203311839, CPU time for 7 and 120 strikes: 0.214 and 1.23 msec., respectively.
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Table 8. Put in the Heston model, T = 15. Prices and errors of the SINH-acceleration
with the universal choice of the parameters.

K 90 100 110 120 130 140 150
x′ 0.6406883845 0.5353278689 0.440017689 0.3530063121 0.2729636044 0.1988556322 0.1298627607
Vput 12.4856557684 14.8462073848 17.4752559196 20.4094193312 23.6896491628 27.3577089222 31.4493345118

ϵ = 10−12 -3.00E-13 -1.40E-12 -6.50E-12 -4.90E-12 3.46E-11 -2.20E-11 -7.48E-11

ϵ = 10−6 -1.04E-06 4.53E-06 -9.60E-06 7.17E-06 1.37E-05 -3.16E-05 -6.82E-06
ϵ = 10−2 -0.0164 -0.053 -0.070 -0.051 0.00314 0.0753 0.139

Put option parameters: r = 0.02, δ = 0, T = 15, S = 100.

Parameters of the Heston model: v0 = 0.18; ρ = −0.58, σ0 = 2.44, κ = 0.30,m = 0.18.

Given the error tolerance, the parameters are chosen the same for strikes in the range [90, 120], using the universal prescriptions
with the correction factors kb = 0.8, kd = 0.8, kζ = 1.85, kΛ = 1.3.

For ϵ = 10−12: N = 58, ζ = 0.095602143, CPU time for 7 and 120 strikes: 0.273 and 1.93 msec., respectively.

For ϵ = 10−6: N = 32, ζ = 0.145718873, CPU time for 7 and 120 strikes: 0.232 and 1.45 msec., respectively.

For ϵ = 10−2: N = 15, ζ = 0.224004098, CPU time for 7 and 120 strikes: 0.205 and 1.12 msec., respectively.

Table 9. Put in the Heston model. Panel A: short and moderate maturities; panel B:
long maturities. Errors (rounded) of the Lewis-Lipton choice of the line of integration
ω = −0.5 (LLT: simplified trapezoid rule, LLS: Simpson rule) and of Carr-Madan-
Schoutens choice ω = −1.75 (CMST: simplified trapezoid rule, CMSS: Simpson rule).
In all cases, ζ = 0.125, N = 4096, hence, the truncation errors are negligible, and the
errors shown are, essentially, the discretization errors.

A
K 85 90 95 100 105 110 115

T = 0.004
x′ 0.205437159 0.1482787452 0.0942115239 0.0429182295 -0.0058719347 -0.0523919503 -0.0968437129

LLT -2.2504E-09 -2.310E-09 -2.372E-09 -2.433E-09 -2.4947E-09 -2.555E-09 -2.615E-09
LLS 2.14E-04 -1.90E-04 -0.0465 -1.060 -5.012 -9.991 -14.99

CMST 2.84E-14 5.68E-14 4.26E-14 -6.02E-14 -4.00E-14 -6.93E-14 0
CMSS -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07

T = 0.1
x′ 0.2085894213 0.1514310075 0.0973637862 0.0460704918 -0.0027196724 -0.049239688 -0.0936914506

LLT -2.248E-09 -2.308E-09 -2.369E-09 -2.430E-09 -2.450E-09 -2.551E-09 -2.613E-09
LLS 2.15E-04 2.21E-04 2.26E-04 2.32E-04 2.38E-04 2.44E-04 2.50E-04

CMST 1.00E-13 9.99E-15 -7.99E-14 -3.02E-14 0 9.95E-14 -9.95E-14
CMSS -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07

T = 1
x′ 0.2381418803 0.1809834665 0.1269162452 0.0756229508 0.0268327867 -0.019687229 -0.0641389916

LLT -2.229E-09 -2.290E-09 -2.348E-09 -2.408E-09 -2.468E-09 -2.527E-09 -2.587E-09
LLS 2.13E-04 2.19E-04 2.25E-04 2.30E-04 2.36 2.42 2.47

CMST 3.02E-14 1.71E-13 -1.09E-13 1.71E-13 0 9.95E-14 -9.95E-14
CMSS -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07 -2.17E-07

B
K 90 100 110 120 130 140 150

T = 5
x′ 0.3123277288 0.2069672131 0.1116570333 0.0246456563 -0.0553970514 -0.1295050235 -0.198497895

LLT -2.206E-09 -2.316E-09 -2.426E-09 -2.536E-09 -2.647E-09 -2.757E-09 -2.867E-09
LLS 2.107E-04 2.212E-04 2.317E-04 2.422E-04 2.527 2.631E-04 2.736

CMST 1.95E-04 1.77E-04 1.63E-04 1.50E-04 1.40E-04 1.31E-04 1.23E-04
CMSS -0.0027 -0.0024 -0.0022 -0.0021 -0.0019 -0.0018 -0.0017

T = 15
x′ 0.6406883845 0.5353278689 0.440017689 0.3530063121 0.2729636044 0.1988556322 0.1298627607

LLT -2.021E-09 -2.114E-09 -2.204E-09 -2.294E-09 -2.384E-09 -2.473E-09 -2.563E-009
LLS 1.929E-04 2.014E-04 2.099E-04 2.185E-04 2.270E-04 2.355 2.440

CMST 0.126 0.116 0.108 0.101 0.0947 0.0895 0.0848
CMSS 0.0471 0.0436 0.0407 0.0382 0.0360 0.0341 0.0324
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Table 10. Prices of the call option on bond in CIR model, rounded. Errors, number
of terms and CPU times (in msc) of different realizations of iFT.

K 97.50512024 97.6461914 97.78746667 97.92894634 98.0706307 98.21252005 98.35461469 98.49691491
zTK -0.02 -0.0175 -0.015 -0.0125 -0.01 -0.0075 -0.005 -0.0025
Call 1
Price 0.876713465 0.756024612 0.636971345 0.519888515 0.40523729 0.293696753 0.186378527 0.08550053
ζ 0.110853 0.110844 0.110835 0.110826 0.110817 0.110808 0.110799 0.110791
N 43 44 45 46 48 50 53 58

Time 0.118 0.118 0.119 0.120 0.120 0.120 0.121 0.124
Call 2
Err 1.54E-14 -5.11E-13 -5.46E-13 -5.93E-13 -6.53E-13 -6.83E-13 -7.36E-13 -7.61E-13
N 58 47 47 48 50 51 53 57

Time 0.123 0.123 0.124 0.123 0.124 0.125 0.126 0.128
FrPara α = 2.8
Err 1.54E-14 -5.11E-13 -5.46E-13 -5.93E-13 -6.64E-13 -6.83E-13 -7.36E-13 -7.72E-13
N 759 795 838 891 961 1060 1217 1540

Time 0.619 0.617 0.618 0.619 0.620 0.618 0.619 0.628

Flat iFT N = 105

Err -5.51E-06 -7.33E-06 -8.99E-06 -1.03E-05 -1.11E-05 -1.10E-05 -9.08E-06 5.29E-07
Time 11.7 11.4 11.4 11.4 11.5 11.4 11.4 11.4

Parameters of CIR model: κ = 1.6; θ = 0.01, σ = 0.5.

Bond matures at T + τ = 3, spot price 99.384925, implied r0 = 0.01.

Call option matures at τ = 1; strikes K and z = ln(C(2, 0) − lnK)/B(2, 0) are shown in the table.

Call 1: call option prices calculated using the sinh-acceleration with the parameters chosen for a curve in the lower half-plane
and put-call parity; errors of these prices is less than 2 ∗ E − 14. The mesh and truncation parameters used are 0.9 times larger
and 0.95 smaller than the general prescription for the error tolerance E − 13 recommends.

Call 2: errors of option prices calculated using the sinh-acceleration with the parameters chosen for the curve that is above
−iB(T − τ, 0) w.r.t. to prices Call 1; no put-call parity is needed. The mesh and truncation parameter are 0.9 times larger and
0.95 smaller than the general prescription for the error tolerance recommends.

FrPara: errors of option prices calculated using the fractional-parabolic method with the parameters chosen so that the errors
are of the same order of magnitude as the ones for Call 1.

Flat iFT: errors of option prices calculated using the flat iFT with N = 100, 000 terms.

Time: CPU time in msc, the average over 100,000 runs.
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Table 11. Prices of the call option in the CIR-subordinated NTS model, rounded.
Errors, meshes, and CPU times (in msc) of different realizations of iFT.

K 97.50512024 115.0273799 112.7496852 110.5170918 108.3287068 106.1836547 104.0810774 102.020134
ln(S0/K) -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
Vcall 0.000300627 0.000359782 0.000439703 0.000553604 0.00072976 0.001043745 0.001811214 0.047838815

SINH1 γ− = −π/3 γ+ = 0 ϵ = 10−15

ζ 0.077345 0.0773358 0.0773263 0.0773167 0.0773070 0.0772970 0.0772870 0.0772767
N 79 81 83 86 90 95 103 172
Err -2.81E-15 -1.11E-15 -1.62E-15 -4.52E-16 5.81E-15 -1.86E-15 -1.00E-15 6.80E-15
Time 0.221 0.235 0.243 0.244 0.247 0.241 0.251 0.245

SINH2 γ− = −π/2 γ+ = 0 ϵ = 10−15

ζ 0.116423 0.1164011 0.1163788 0.1163560 0.1163329 0.1163093 0.1162853 0.116261
N 51 52 54 56 58 62 67 117
Err 1.20E-17 -1.80E-15 -1.45E-15 9.60E-16 -1.62E-15 -2.58E-15 -5.17E-15 1.15E-09
Time 0.195 0.197 0.202 0.199 0.207 0.214 0.219 0.261

SINH3 γ− = −π/2 γ+ = 0 ϵ = 10−7

ζ 0.2251344 0.2250521 0.2249685 0.2248835 0.2247970 0.2247091 0.2246196 0.2245286
N 23 24 25 26 27 28 31 54
Err -5.33E-07 -5.12E-07 -4.92E-07 -4.76E-07 -4.65E-07 -4.67E-07 -5.39E-07 -8.58E-06
Time 0.159 0.154 0.155 0.158 0.160 0.161 0.167 0.188

Flat iFT ω0 = −1.75 ζ = 0.25 N = 16384
Err 5.02E-07 4.82E-07 4.63E-07 4.47E-07 4.36E-07 4.39E-07 5.11E-07 1.07E-05
Time 6.74 6.72 6.78 6.71 6.74 6.75 6.72 6.67

Parameters of CIR subordinator: κ = 1.6; θ = 0.01, λ = 0.25, y0 = 0.02.

Parameters of NTS model: m2 = 0.1, ν = 1.6, δ = 0.097, α = 3, β = 0, µ = 0.

Call option: maturity τ = 0.004, r = 0.02; spot S0 = 100, strikes K and lnS0/K are shown in the table.

Benchmark prices calculated using several sets of the parameters of the sinh-acceleration; errors less than 2E − 15 in the
absolute value.

SINH1: ζ (rounded), N , errors and CPU time when using the general prescription with γ− = −π/3, γ+ = 0, for ϵ = 10−15.

SINH2: ζ (rounded), N , errors and CPU time when using the general prescription with γ− = −π/2, γ+ = 0, for ϵ = 10−15.

SINH3: ζ (rounded), N , errors and CPU time when using the general prescription with γ− = −π/2, γ+ = 0, for ϵ = 10−7.

Flat iFT: errors and CPU time of the calculation using the flat iFT with the standard prescription
ω0 = −1.75, ζ = 0.25, N = 16384.

Time: CPU time in msc, the average over 100,000 runs.

Table 12. Errors of approximations L,N,LL, LN and QT, for different fractiles
F−1(A) and intervals of different length, containing F−1(A).

A 2 ∗ 10−9 e−16 10−5 0.001 0.3
h 0.01 0.001 0.01 0.001 0.01 0.001 10−3 10−4 10−4 10−5

L -7.3E-05 -6.8E-07 -7.7E-05 -7.9E-07 -9.3E-05 -9.4E-07 -2.4E-06 -2.5E-08 -6.4E-06 -5.0E-08
N 7.7E-05 1.2E-06 0.0001 8.8E-07 0.00015 1.4E-06 4.3E-06 2.0E-08 1.7E-06 9.5E-09
LL -8.4E-07 -7.8E-09 -1.7E-06 -1.7E-08 -5.7E-06 -5.8E-08 -6.1E-07 -6.5E-09 -3.6E-06 -2.9E-08
LN 8.9E-07 1.4E-08 2.4E-06 2.0E-08 9.0E-06 8.6E-08 1.1E-06 5.0E-09 1.0E-06 5.4E-09
QT -1.5E-09 -3.4E-12 -6.9E-09 -7.1E-12 -5.7E-08 -5.3E-11 -4.1E-09 -1.3E-12 -5.5E-08 -2.1E-11


